Datasets:
File size: 4,978 Bytes
3707754 1984f0e 1785294 753ff5e 1785294 39c9f79 1785294 39c9f79 3707754 1984f0e 753ff5e 1984f0e 753ff5e 1984f0e 9689dfd 1984f0e 9689dfd 1984f0e 753ff5e 1984f0e 753ff5e 1984f0e 753ff5e 1984f0e 753ff5e 1984f0e 753ff5e 1984f0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
---
language:
- en
size_categories:
- 1B<n<10B
task_categories:
- text-generation
pretty_name: AgentSearch-V1
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
dataset_info:
features:
- name: id
dtype: int64
- name: url
dtype: string
- name: title
dtype: string
- name: metadata
dtype: string
- name: dataset
dtype: string
- name: text_chunks
sequence: string
- name: embeddings
sequence:
sequence: float64
splits:
- name: train
num_bytes: 40563228
num_examples: 1000
download_size: 34541852
dataset_size: 40563228
---
### Getting Started
The AgentSearch-V1 dataset includes over one billion embeddings sourced from over 50 million high-quality documents. This extensive collection encompasses the majority of content from sources like Arxiv, Wikipedia, Project Gutenberg, and includes quality-filtered CC data.
To access and utilize the AgentSearch-V1 dataset, you can stream it via HuggingFace with the following Python code:
```python
from datasets import load_dataset
# To stream the entire dataset:
ds = load_dataset("SciPhi/OpenWebSearch-V1", data_files="**/*", streaming=True)
# Optional, stream just the "arxiv" dataset
ds = load_dataset("SciPhi/OpenWebSearch-V1", data_files="arxiv/*", streaming=True)
```
---
A full set of scripts to recreate the dataset from scratch can be found [here](https://github.com/SciPhi/agent-search).
### Dataset Summary
We take a similar approach to RedPajama-v1 and divide AgentSearch into a number of categories.
| Dataset | Token Count |
|----------------|-------------|
| Books | x Billion |
| ArXiv | x Billion |
| Wikipedia | x Billion |
| StackExchange | x Billion |
| OpenMath | x Billion |
| Filtered Crawl | x Billion |
| Total | x Billion |
### Languages
English.
## Dataset Structure
The raw dataset structure is as follows:
```json
{
"url": ...,
"title": ...,
"metadata": {"url": "...", "timestamp": "...", "source": "...", "language": "...", ...},
"text_chunks": ...,
"embeddings": ...,
"dataset": "github" | "books" | "arxiv" | "wikipedia" | "stackexchange" | "open-math" | "filtered-rp2"
}
```
The indexed dataset can be downloaded directly and is structured as a qdrant database dump, each entry has meta data {"url", "vector"}. In addition, there is a corresponding sqlite dataset which contains the mapping from urls onto embeddings, text chunks, and other metadata.
## Dataset Creation
This dataset was created as a step towards making humanities most important knowledge locally searchable and LLM optimal. It was created by filtering, cleaning, and augmenting locally publicly available datasets.
To cite our work, please use the following:
```
@software{SciPhi2023AgentSearch,
author = {SciPhi},
title = {AgentSearch [ΨΦ]: A Comprehensive Agent-First Framework and Dataset for Webscale Search},
year = {2023},
url = {https://github.com/SciPhi-AI/agent-search}
}
```
### Source Data
```
@ONLINE{wikidump,
author = "Wikimedia Foundation",
title = "Wikimedia Downloads",
url = "https://dumps.wikimedia.org"
}
```
```
@misc{paster2023openwebmath,
title={OpenWebMath: An Open Dataset of High-Quality Mathematical Web Text},
author={Keiran Paster and Marco Dos Santos and Zhangir Azerbayev and Jimmy Ba},
year={2023},
eprint={2310.06786},
archivePrefix={arXiv},
primaryClass={cs.AI}
}
```
```
@software{together2023redpajama,
author = {Together Computer},
title = {RedPajama: An Open Source Recipe to Reproduce LLaMA training dataset},
month = April,
year = 2023,
url = {https://github.com/togethercomputer/RedPajama-Data}
}
```
### License
Please refer to the licenses of the data subsets you use.
* [Open-Web (Common Crawl Foundation Terms of Use)](https://commoncrawl.org/terms-of-use/full/)
* Books: [the_pile_books3 license](https://huggingface.co/datasets/the_pile_books3#licensing-information) and [pg19 license](https://huggingface.co/datasets/pg19#licensing-information)
* [ArXiv Terms of Use](https://info.arxiv.org/help/api/tou.html)
* [Wikipedia License](https://huggingface.co/datasets/wikipedia#licensing-information)
* [StackExchange license on the Internet Archive](https://archive.org/details/stackexchange)
<!--
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed]
--> |