Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
File size: 4,422 Bytes
3707754
1984f0e
 
 
 
1785294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39c9f79
1785294
39c9f79
 
3707754
1984f0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
---
language:
- en
size_categories:
- 1B<n<10B
task_categories:
- text-generation
pretty_name: OpenSERP-V1
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
dataset_info:
  features:
  - name: id
    dtype: int64
  - name: url
    dtype: string
  - name: title
    dtype: string
  - name: metadata
    dtype: string
  - name: dataset
    dtype: string
  - name: text_chunks
    sequence: string
  - name: embeddings
    sequence:
      sequence: float64
  splits:
  - name: train
    num_bytes: 40563228
    num_examples: 1000
  download_size: 34541852
  dataset_size: 40563228
---

### Getting Started

The OpenSERP-V1 dataset includes full embeddings for over 50 million high-quality documents. This extensive collection encompasses the majority of content from sources like Arxiv, Wikipedia, Project Gutenberg, and includes quality-filtered CC data.

To access and utilize the OpenSERP-1B dataset, you can download it via HuggingFace with the following Python code:

```python
from datasets import load_dataset
ds = load_dataset("SciPhi/OpenSERP-V1")

# Optional, load just the "arxiv" dataset
ds = load_dataset("SciPhi/OpenSERP-V1", "arxiv")

```

---

A full set of scripts to recreate the dataset from scratch can be found [here](https://github.com/SciPhi/OpenSERP).

### Dataset Summary

OpenSERP is divided into a number of categories, similar to RedPajama-V1.


| Dataset        | Token Count |
|----------------|-------------|
| Books          | x Billion   |
| ArXiv          | x Billion   |
| Wikipedia      | x Billion   |
| StackExchange  | x Billion   |
| OpenMath       | x Billion   |
| Filtered Crawl | x Billion   |
| Total          | x Billion   |

### Languages

English.

## Dataset Structure

The raw dataset structure is as follows:

```json
{
    "url": ...,
    "title": ...,
    "metadata": {"url": "...", "timestamp": "...", "source": "...", "language": "...", ...},
    "text_chunks": ...,
    "embeddings": ...,
    "dataset": "github" | "books" | "arxiv" | "wikipedia" | "stackexchange" | "open-math" | "filtered-rp2"
}
```

The indexed dataset is structured as a qdrant database dump, each entry has meta data {"url", "vector"}.

## Dataset Creation

This dataset was created to allow make humanities most important knowledge locally searchable. It was created by filtering, cleaning, and augmenting locally publicly available datasets.

The embedding vectors have been indexed and made searchable via a qdrant database.

### Source Data

```
@ONLINE{wikidump,
    author = "Wikimedia Foundation",
    title  = "Wikimedia Downloads",
    url    = "https://dumps.wikimedia.org"
}
```

```
@misc{paster2023openwebmath,
      title={OpenWebMath: An Open Dataset of High-Quality Mathematical Web Text},
      author={Keiran Paster and Marco Dos Santos and Zhangir Azerbayev and Jimmy Ba},
      year={2023},
      eprint={2310.06786},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}
```

```
@software{together2023redpajama,
  author = {Together Computer},
  title = {RedPajama: An Open Source Recipe to Reproduce LLaMA training dataset},
  month = April,
  year = 2023,
  url = {https://github.com/togethercomputer/RedPajama-Data}
}
```

### License
Please refer to the licenses of the data subsets you use.

* [Open-Web (Common Crawl Foundation Terms of Use)](https://commoncrawl.org/terms-of-use/full/)
* Books: [the_pile_books3 license](https://huggingface.co/datasets/the_pile_books3#licensing-information) and [pg19 license](https://huggingface.co/datasets/pg19#licensing-information)
* [ArXiv Terms of Use](https://info.arxiv.org/help/api/tou.html)
* [Wikipedia License](https://huggingface.co/datasets/wikipedia#licensing-information)
* [StackExchange license on the Internet Archive](https://archive.org/details/stackexchange)

<!--
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed]
-->