|
import pandas as pd
|
|
from collections import Counter
|
|
import json
|
|
import random
|
|
|
|
|
|
df = pd.read_csv("original_train.csv")
|
|
|
|
print(df)
|
|
"""
|
|
for field in ["target", "severe_toxicity", "obscene", "identity_attack", "insult", "threat"]:
|
|
print("\n\n", field)
|
|
num_greater = 0
|
|
for val in df[field]:
|
|
if val >= 0.5:
|
|
num_greater += 1
|
|
|
|
print(num_greater, len(df[field]), f"{num_greater/len(df[field])*100:.2f}%")
|
|
"""
|
|
|
|
|
|
rows = [{'text': row['comment_text'].strip(),
|
|
'label': "1" if row['target'] >= 0.5 else "0",
|
|
'label_text': "toxic" if row['target'] >= 0.5 else "not toxic",
|
|
} for idx, row in df.iterrows()]
|
|
|
|
random.seed(42)
|
|
random.shuffle(rows)
|
|
|
|
num_test = 10000
|
|
splits = {'test': rows[0:num_test], 'train': rows[num_test:]}
|
|
|
|
print("Train:", len(splits['train']))
|
|
print("Test:", len(splits['test']))
|
|
|
|
num_labels = Counter()
|
|
|
|
for row in splits['test']:
|
|
num_labels[row['label']] += 1
|
|
print(num_labels)
|
|
|
|
for split in ['train', 'test']:
|
|
with open(f'{split}.jsonl', 'w') as fOut:
|
|
for row in splits[split]:
|
|
fOut.write(json.dumps(row)+"\n") |