Datasets:
Tasks:
Automatic Speech Recognition
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
License:
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
# | |
# SPDX-FileCopyrightText: Copyright © <2022> Idiap Research Institute <[email protected]> | |
# | |
# SPDX-FileContributor: Juan Zuluaga-Gomez <[email protected]> | |
# | |
# SPDX-License-Identifier: MIT-License | |
"""\ | |
Script for loading air traffic control (ATC) speech datasets for automatic speech recognition (ASR). | |
This script has been designed for ATC datasets that are in Kaldi format | |
Required files: text, wav.scp and segments files | |
- Databases | |
- Training: | |
- ATCOSIM, LDC-ATCC and, UWB-ATCC corpora. | |
- Testing: | |
- ATCO2-test-set, ATCOSIM, LDC-ATCC and, UWB-ATCC corpora. | |
""" | |
import os | |
import re | |
import datasets | |
import numpy as np | |
import soundfile as sf | |
from datasets.tasks import AutomaticSpeechRecognition | |
_CITATION = """\ | |
@article{zuluaga2022does, | |
title={How Does Pre-trained Wav2Vec 2.0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications}, | |
author={Zuluaga-Gomez, Juan and Prasad, Amrutha and Nigmatulina, Iuliia and Sarfjoo, Saeed and Motlicek, Petr and Kleinert, Matthias and Helmke, Hartmut and Ohneiser, Oliver and Zhan, Qingran}, | |
journal={2022 IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar}, | |
year={2022} | |
} | |
@article{zuluagabertraffic, | |
title={BERTraffic: BERT-based Joint Speaker Role and Speaker Change Detection for Air Traffic Control Communications (submitted to @ SLT-2022)}, | |
author={Zuluaga-Gomez, Juan and Sarfjoo, Seyyed Saeed and Prasad, Amrutha and Nigmatulina, Iuliia and Motlicek, Petr and Ohneiser, Oliver and Helmke, Hartmut}, | |
journal={2022 IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar}, | |
year={2022} | |
} | |
""" | |
_DESCRIPTION = """\ | |
ATC speech DATASET. This DataLoader works with data in Kaldi format. | |
- We use the following files: text, segments and wav.scp | |
- text --> utt_id transcript | |
- segments --> utt_id recording_id t_begin t_end | |
- wav.scp --> recording_id /path/to/wav/ | |
The default dataset is from ATCO2 project, a 1-hour sample: https://www.replaywell.com/atco2/download/ATCO2-ASRdataset-v1_beta.tgz | |
""" | |
_DATA_URL = "http://catalog.elra.info/en-us/repository/browse/ELRA-S0484/" | |
_HOMEPAGE = "https://github.com/idiap/w2v2-air-traffic" | |
logger = datasets.logging.get_logger(__name__) | |
# Our models work with audio data at 16kHZ, | |
_SAMPLING_RATE = int(16000) | |
class ATCDataASRConfig(datasets.BuilderConfig): | |
"""BuilderConfig for air traffic control datasets.""" | |
def __init__(self, **kwargs): | |
""" | |
Args: | |
data_dir: `string`, the path to the folder containing the files required to read: json or wav.scp | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(ATCDataASRConfig, self).__init__(**kwargs) | |
class ATCDataASR(datasets.GeneratorBasedBuilder): | |
DEFAULT_WRITER_BATCH_SIZE = 256 | |
DEFAULT_CONFIG_NAME = "all" | |
BUILDER_CONFIGS = [ | |
# TRAIN, DEV AND TEST DATASETS | |
ATCDataASRConfig(name="train", description="ATC train dataset."), | |
ATCDataASRConfig(name="dev", description="ATC dev dataset."), | |
ATCDataASRConfig(name="test", description="ATC test dataset."), | |
# UNSUPERVISED DATASETS | |
ATCDataASRConfig(name="unsupervised", description="ATC unsupervised dataset."), | |
] | |
# provide some information about the Dataset we just gathered | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"file": datasets.Value("string"), | |
"audio": datasets.features.Audio(sampling_rate=_SAMPLING_RATE), | |
"text": datasets.Value("string"), | |
"segment_start_time": datasets.Value("float"), | |
"segment_end_time": datasets.Value("float"), | |
"duration": datasets.Value("float"), | |
} | |
), | |
supervised_keys=("audio", "text"), | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
task_templates=[ | |
AutomaticSpeechRecognition( | |
audio_column="audio", transcription_column="text" | |
) | |
], | |
) | |
def _split_generators(self, dlmanager): | |
"""Returns SplitGenerators.""" | |
split = self.config.name | |
# UNSUPERVISED set (used only for decoding) | |
if "unsupervised" in split: | |
split_name = datasets.Split.TEST | |
elif "test" in split or "dev" in split or "dummy" in split: | |
split_name = datasets.Split.TEST | |
# The last option left is: Train set | |
else: | |
split_name = datasets.Split.TRAIN | |
# you need to pass a data directory where the Kaldi folder is stored | |
filepath = self.config.data_dir | |
return [ | |
datasets.SplitGenerator( | |
name=split_name, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": filepath, | |
"split": split, | |
}, | |
) | |
] | |
def _generate_examples(self, filepath, split): | |
"""You need to pass a path with the kaldi data, the folder should have | |
audio: wav.scp, | |
transcripts: text, | |
timing information: segments | |
""" | |
logger.info("Generating examples located in: %s", filepath) | |
text_file = os.path.join(filepath, "text") | |
wavscp = os.path.join(filepath, "wav.scp") | |
segments = os.path.join(filepath, "segments") | |
id_ = "" | |
text_dict, wav_dict = {}, {} | |
segments_dict, utt2wav_id = {}, {} | |
line = 0 | |
# get the text file | |
with open(text_file) as text_f: | |
for line in text_f: | |
if len(line.split(" ")) > 1: | |
id_, transcript = line.split(" ", maxsplit=1) | |
transcript = _remove_special_characters(transcript) | |
if len(transcript.split(" ")) == 0: | |
continue | |
if len(transcript) < 2: | |
continue | |
text_dict[id_] = transcript | |
else: # line is empty | |
# if unsupervised set, then it's normal. else, continue | |
if not "test_unsup" in self.config.name: | |
continue | |
id_ = line.rstrip().split(" ")[0] | |
text_dict[id_] = "" | |
# get wav.scp and load data into memory | |
with open(wavscp) as text_f: | |
for line in text_f: | |
if line: | |
if len(line.split()) < 2: | |
continue | |
id_, wavpath = line.split(" ", maxsplit=1) | |
# only selects the part that ends of wav, flac or sph | |
wavpath = [ | |
x | |
for x in wavpath.split(" ") | |
if ".wav" in x or ".WAV" in x or ".flac" in x or ".sph" in x | |
][0].rstrip() | |
# make the output | |
segment, sampling_rate = sf.read(wavpath, dtype=np.int16) | |
wav_dict[id_] = [wavpath.rstrip(), segment, sampling_rate] | |
# get segments dictionary | |
with open(segments) as text_f: | |
for line in text_f: | |
if line: | |
if len(line.split()) < 4: | |
continue | |
id_, wavid_, start, end = line.rstrip().split(" ") | |
segments_dict[id_] = start.rstrip(), end.rstrip() | |
utt2wav_id[id_] = wavid_ | |
for rec_id, text in text_dict.items(): | |
if rec_id in utt2wav_id and rec_id in segments_dict: | |
# get audio data from memory and the path of the file | |
wavpath, segment, sampling_rate = wav_dict[utt2wav_id[rec_id]] | |
# get timing information | |
seg_start, seg_end = segments_dict[rec_id] | |
seg_start, seg_end = float(seg_start), float(seg_end) | |
duration = round((seg_end - seg_start), 3) | |
# get the samples, bytes, already cropping by segment, | |
samples = _extract_audio_segment( | |
segment, sampling_rate, float(seg_start), float(seg_end) | |
) | |
# output data for given dataset | |
example = { | |
"audio": { | |
"path": wavpath, | |
"array": samples, | |
"sampling_rate": sampling_rate, | |
}, | |
"id": rec_id, | |
"file": wavpath, | |
"text": text, | |
"segment_start_time": format(float(seg_start), ".3f"), | |
"segment_end_time": format(float(seg_end), ".3f"), | |
"duration": format(float(duration), ".3f"), | |
} | |
yield rec_id, example | |
def _remove_special_characters(text): | |
"""Function to remove some special chars/symbols from the given transcript""" | |
text = text.split(" ") | |
# first remove words between [] and <> | |
text = " ".join( | |
[ | |
x | |
for x in text | |
if "[" not in x and "]" not in x and "<" not in x and ">" not in x | |
] | |
) | |
# regex with predifined symbols to ignore/remove, | |
chars_to_ignore_regex2 = '[\{\[\]\<\>\/\,\?\.\!\u00AC\;\:"\\%\\\]|[0-9]' | |
text = re.sub(chars_to_ignore_regex2, "", text).lower() | |
sentence = text.replace("\u2013", "-") | |
sentence = sentence.replace("\u2014", "-") | |
sentence = sentence.replace("\u2018", "'") | |
sentence = sentence.replace("\u201C", "") | |
sentence = sentence.replace("\u201D", "") | |
sentence = sentence.replace("ñ", "n") | |
sentence = sentence.replace(" - ", " ") | |
sentence = sentence.replace("-", "") | |
sentence = sentence.replace("'", " ") | |
return sentence.lower().rstrip() | |
def _extract_audio_segment(segment, sampling_rate, start_sec, end_sec): | |
"""Extracts segment of audio samples (as an ndarray) from the given segment.""" | |
# The dataset only contains mono audio. | |
start_sample = int(start_sec * sampling_rate) | |
end_sample = min(int(end_sec * sampling_rate), segment.shape[0]) | |
samples = segment[start_sample:end_sample] | |
return samples | |