Update hugging_face.py
Browse files- hugging_face.py +63 -58
hugging_face.py
CHANGED
@@ -36,9 +36,6 @@ _LICENSE = ""
|
|
36 |
# TODO: Add link to the official dataset URLs here
|
37 |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
38 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
39 |
-
_URLS = {
|
40 |
-
"dataset": "https://prod-dcd-datasets-cache-zipfiles.s3.eu-west-1.amazonaws.com/5ty2wb6gvg-1.zip"
|
41 |
-
}
|
42 |
|
43 |
|
44 |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
@@ -61,7 +58,7 @@ class RDD2020_Dataset(datasets.GeneratorBasedBuilder):
|
|
61 |
"depth": datasets.Value("int32"),
|
62 |
}),
|
63 |
"image_path": datasets.Value("string"),
|
64 |
-
"pics_array": datasets.Array3D(shape=(None, None, 3), dtype="uint8"),
|
65 |
"crack_type": datasets.Sequence(datasets.Value("string")),
|
66 |
"crack_coordinates": datasets.Sequence(datasets.Features({
|
67 |
"x_min": datasets.Value("int32"),
|
@@ -75,79 +72,87 @@ class RDD2020_Dataset(datasets.GeneratorBasedBuilder):
|
|
75 |
)
|
76 |
|
77 |
def _split_generators(self, dl_manager):
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
return [
|
82 |
datasets.SplitGenerator(
|
83 |
name=datasets.Split.TRAIN,
|
84 |
gen_kwargs={
|
85 |
-
"images_dir": os.path.join(
|
86 |
-
"annotations_dir": os.path.join(
|
87 |
"split": "train",
|
88 |
},
|
89 |
),
|
90 |
datasets.SplitGenerator(
|
91 |
name=datasets.Split.TEST,
|
92 |
gen_kwargs={
|
93 |
-
"images_dir": os.path.join(
|
94 |
-
"annotations_dir":
|
95 |
"split": "test1",
|
96 |
},
|
97 |
),
|
98 |
datasets.SplitGenerator(
|
99 |
-
name=datasets.Split.
|
100 |
gen_kwargs={
|
101 |
-
"images_dir": os.path.join(
|
102 |
-
"annotations_dir":
|
103 |
"split": "test2",
|
104 |
},
|
105 |
),
|
106 |
]
|
107 |
|
108 |
-
def _generate_examples(self,
|
109 |
-
|
110 |
-
for
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
}
|
137 |
-
crack_coordinates.append(coordinates)
|
138 |
-
|
139 |
-
# Assuming images are of uniform size, you might want to adjust this or extract from image directly
|
140 |
-
image_resolution = {"width": 600, "height": 600, "depth": 3} if country != "India" else {"width": 720,
|
141 |
-
"height": 720,
|
142 |
-
"depth": 3}
|
143 |
-
yield image_id, {
|
144 |
-
"image_id": image_id,
|
145 |
-
"country": country,
|
146 |
-
"type": split,
|
147 |
-
"image_resolution": image_resolution,
|
148 |
-
"image_path": image_path,
|
149 |
-
"crack_type": crack_type,
|
150 |
-
"crack_coordinates": crack_coordinates,
|
151 |
-
}
|
152 |
-
|
153 |
-
|
|
|
36 |
# TODO: Add link to the official dataset URLs here
|
37 |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
38 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
|
|
|
|
|
|
39 |
|
40 |
|
41 |
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
|
|
58 |
"depth": datasets.Value("int32"),
|
59 |
}),
|
60 |
"image_path": datasets.Value("string"),
|
61 |
+
#"pics_array": datasets.Array3D(shape=(None, None, 3), dtype="uint8"),
|
62 |
"crack_type": datasets.Sequence(datasets.Value("string")),
|
63 |
"crack_coordinates": datasets.Sequence(datasets.Features({
|
64 |
"x_min": datasets.Value("int32"),
|
|
|
72 |
)
|
73 |
|
74 |
def _split_generators(self, dl_manager):
|
75 |
+
# The URL provided must be the direct link to the zip file
|
76 |
+
urls_to_download = {
|
77 |
+
"dataset": "https://huggingface.co/datasets/ShixuanAn/RDD2020/resolve/main/RDD2020.zip"
|
78 |
+
}
|
79 |
+
|
80 |
+
# Download and extract the dataset using the dl_manager
|
81 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download["dataset"])
|
82 |
+
|
83 |
+
# Assuming the ZIP file extracts to a folder named 'RDD2020'
|
84 |
+
extracted_path = os.path.join(downloaded_files, "RDD2020")
|
85 |
|
86 |
return [
|
87 |
datasets.SplitGenerator(
|
88 |
name=datasets.Split.TRAIN,
|
89 |
gen_kwargs={
|
90 |
+
"images_dir": os.path.join(extracted_path, "train", "images"),
|
91 |
+
"annotations_dir": os.path.join(extracted_path, "train", "annotations", "xmls"),
|
92 |
"split": "train",
|
93 |
},
|
94 |
),
|
95 |
datasets.SplitGenerator(
|
96 |
name=datasets.Split.TEST,
|
97 |
gen_kwargs={
|
98 |
+
"images_dir": os.path.join(extracted_path, "test1", "images"),
|
99 |
+
"annotations_dir": None, # No annotations for test1
|
100 |
"split": "test1",
|
101 |
},
|
102 |
),
|
103 |
datasets.SplitGenerator(
|
104 |
+
name=datasets.Split.VALIDATION,
|
105 |
gen_kwargs={
|
106 |
+
"images_dir": os.path.join(extracted_path, "test2", "images"),
|
107 |
+
"annotations_dir": None, # No annotations for test2
|
108 |
"split": "test2",
|
109 |
},
|
110 |
),
|
111 |
]
|
112 |
|
113 |
+
def _generate_examples(self, base_path, split):
|
114 |
+
# Iterate over each country directory
|
115 |
+
for country_dir in ['Czech', 'India', 'Japan']:
|
116 |
+
images_dir = f"{extracted_path}/{country_dir}/images"
|
117 |
+
annotations_dir = f"{extracted_path}/{country_dir}/annotations/xmls" if split == "train" else None
|
118 |
+
|
119 |
+
# Iterate over each image in the country's image directory
|
120 |
+
for image_file in os.listdir(images_dir):
|
121 |
+
if not image_file.endswith('.jpg'):
|
122 |
+
continue
|
123 |
+
|
124 |
+
image_id = f"{country_dir}_{image_file.split('.')[0]}"
|
125 |
+
image_path = os.path.join(images_dir, image_file)
|
126 |
+
if annotations_dir:
|
127 |
+
annotation_file = image_id + '.xml'
|
128 |
+
annotation_path = os.path.join(annotations_dir, annotation_file)
|
129 |
+
if not os.path.exists(annotation_path):
|
130 |
+
continue
|
131 |
+
tree = ET.parse(annotation_path)
|
132 |
+
root = tree.getroot()
|
133 |
+
crack_type = []
|
134 |
+
crack_coordinates = []
|
135 |
+
for obj in root.findall('object'):
|
136 |
+
crack_type.append(obj.find('name').text)
|
137 |
+
bndbox = obj.find('bndbox')
|
138 |
+
coordinates = {
|
139 |
+
"x_min": int(bndbox.find('xmin').text),
|
140 |
+
"x_max": int(bndbox.find('xmax').text),
|
141 |
+
"y_min": int(bndbox.find('ymin').text),
|
142 |
+
"y_max": int(bndbox.find('ymax').text),
|
143 |
+
}
|
144 |
+
crack_coordinates.append(coordinates)
|
145 |
+
else:
|
146 |
+
crack_type = []
|
147 |
+
crack_coordinates = []
|
148 |
+
|
149 |
+
image_resolution = {"width": 600, "height": 600, "depth": 3}
|
150 |
+
yield image_id, {
|
151 |
+
"image_id": image_id,
|
152 |
+
"country": country_dir,
|
153 |
+
"type": split,
|
154 |
+
"image_resolution": image_resolution,
|
155 |
+
"image_path": image_path,
|
156 |
+
"crack_type": crack_type,
|
157 |
+
"crack_coordinates": crack_coordinates,
|
158 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|