File size: 6,458 Bytes
d92f616
 
 
 
 
 
 
 
 
 
 
4953151
d92f616
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6eb3c7c
 
b066243
d92f616
 
 
 
 
 
 
 
 
 
 
c7a7861
8d102e2
c7a7861
8d3515f
19ebb8d
 
 
8d3515f
 
 
4927cbc
c7a7861
8d3515f
f8dd6b6
0a107d3
7320725
5805eb9
 
80c3f37
231bbd7
 
 
 
63f6c86
231bbd7
c7a7861
231bbd7
 
8d3515f
231bbd7
63f6c86
231bbd7
c7a7861
231bbd7
 
8d3515f
231bbd7
5fd226e
231bbd7
c7a7861
231bbd7
 
b066243
3f895a0
c7a7861
bc5162b
c7a7861
 
c836c23
c7a7861
 
8d3515f
c836c23
c7a7861
 
c836c23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""

import csv
import json
import os
from typing import List
import datasets
import logging
import xml.etree.ElementTree as ET
import os
from PIL import Image

# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={Shixuan An
},
year={2024}
}
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)


# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class RDD2020_Dataset(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("1.1.0")

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features({
                "image_id": datasets.Value("string"),
                "country": datasets.Value("string"),
                "type": datasets.Value("string"),
                "image_resolution": datasets.Features({
                    "width": datasets.Value("int32"),
                    "height": datasets.Value("int32"),
                    "depth": datasets.Value("int32"),
                }),
                "image": datasets.Value("string"),
                #"image_path": datasets.Value("string"),
                #"pics_array": datasets.Array3D(shape=(None, None, 3), dtype="uint8"),
                "crack_type": datasets.Sequence(datasets.Value("string")),
                "crack_coordinates": datasets.Sequence(datasets.Features({
                    "x_min": datasets.Value("int32"),
                    "x_max": datasets.Value("int32"),
                    "y_min": datasets.Value("int32"),
                    "y_max": datasets.Value("int32"),
                })),
            }),
            homepage='https://data.mendeley.com/datasets/5ty2wb6gvg/1',
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):

        urls_to_download = {
        "train": 'https://huggingface.co/datasets/ShixuanAn/RDD_2020/resolve/main/train.zip',
        "test1": "https://huggingface.co/datasets/ShixuanAn/RDD_2020/resolve/main/test1.zip",
        "test2": "https://huggingface.co/datasets/ShixuanAn/RDD_2020/resolve/main/test2.zip"
        }

        downloaded_files = {
        name: dl_manager.download_and_extract(url)
        for name, url in urls_to_download.items()
        }
       # print( downloaded_files['train'])

     
       # files_and_directories = os.listdir(directory_path)
       # print(files_and_directories)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": os.path.join(downloaded_files["train"], "train"),
                    "split": "train",
                }
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": os.path.join(downloaded_files["test1"], "test1"),
                    "split": "test1",
                }
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath":os.path.join(downloaded_files["test2"], "test2"),
                    "split": "test2",
                }
            ),
        ]


    def _generate_examples(self, filepath, split):
        for country_dir in ['Czech', 'India', 'Japan']:
            images_dir = f"{filepath}/{country_dir}/images"
            annotations_dir = f"{filepath}/{country_dir}/annotations/xmls" if split == "train" else None
    
            for image_file in os.listdir(images_dir):
                if not image_file.endswith('.jpg'):
                    continue
    
                image_id = f"{image_file.split('.')[0]}"
                image_path = os.path.join(images_dir, image_file)
    
                # Load the image as a PIL Image object
                with Image.open(image_path) as img:
                    # If you need to process the image, do it here
    
                    if annotations_dir:
                        annotation_file = image_id + '.xml'
                        annotation_path = os.path.join(annotations_dir, annotation_file)
                        if not os.path.exists(annotation_path):
                            continue
                        tree = ET.parse(annotation_path)
                        root = tree.getroot()
                        crack_type = []
                        crack_coordinates = []
                        for obj in root.findall('object'):
                            crack_type.append(obj.find('name').text)
                            bndbox = obj.find('bndbox')
                            coordinates = {
                                "x_min": int(bndbox.find('xmin').text),
                                "x_max": int(bndbox.find('xmax').text),
                                "y_min": int(bndbox.find('ymin').text),
                                "y_max": int(bndbox.find('ymax').text),
                            }
                            crack_coordinates.append(coordinates)
                    else:
                        crack_type = []
                        crack_coordinates = []
    
                    # Now 'img' is a PIL Image object, we keep it open and yield it
                    yield image_id, {
                        "image_id": image_id,
                        "country": country_dir,
                        "type": split,
                        "image": img.copy(),  # We make a copy of the image object
                        "crack_type": crack_type,
                        "crack_coordinates": crack_coordinates,
                    }