File size: 5,884 Bytes
d92f616 b066243 d92f616 8d102e2 feb4365 b066243 feb4365 b066243 8d102e2 d92f616 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
import csv
import json
import os
from typing import List
import datasets
import logging
import xml.etree.ElementTree as ET
import os
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={Shixuan An
},
year={2024}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
"dataset": "https://prod-dcd-datasets-cache-zipfiles.s3.eu-west-1.amazonaws.com/5ty2wb6gvg-1.zip"
}
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class RDD2020_Dataset(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
_URLS = _URLS
VERSION = datasets.Version("1.1.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({
"image_id": datasets.Value("string"),
"country": datasets.Value("string"),
"type": datasets.Value("string"),
"image_resolution": datasets.Features({
"width": datasets.Value("int32"),
"height": datasets.Value("int32"),
"depth": datasets.Value("int32"),
}),
"image_path": datasets.Value("string"),
#"pics_array": datasets.Array3D(shape=(None, None, 3), dtype="uint8"),
"crack_type": datasets.Sequence(datasets.Value("string")),
"crack_coordinates": datasets.Sequence(datasets.Features({
"x_min": datasets.Value("int32"),
"x_max": datasets.Value("int32"),
"y_min": datasets.Value("int32"),
"y_max": datasets.Value("int32"),
})),
}),
homepage='https://data.mendeley.com/datasets/5ty2wb6gvg/1',
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""This method downloads/extracts the data and defines the splits."""
data_dir = dl_manager.download_and_extract(_URLS["dataset"])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"images_dir": os.path.join(data_dir, "train"),
"annotations_dir": os.path.join(data_dir, "train", "annotations"),
"split": "train",
},
),
datasets.SplitGenerator(
name="test1",
gen_kwargs={
"images_dir": os.path.join(data_dir, "test1"),
"annotations_dir": os.path.join(data_dir, "test1", "annotations"),
"split": "test1",
},
),
datasets.SplitGenerator(
name="test2",
gen_kwargs={
"images_dir": os.path.join(data_dir, "test2"),
"annotations_dir": os.path.join(data_dir, "test2", "annotations"),
"split": "test2",
},
),
]
def _generate_examples(self, images_dir, annotations_dir, split):
"""Yields examples as (key, example) tuples."""
for image_file in os.listdir(images_dir):
if not image_file.endswith('.jpg'):
continue
image_id = image_file.split('.')[0]
annotation_file = image_id + '.xml'
annotation_path = os.path.join(annotations_dir, annotation_file)
if not os.path.exists(annotation_path):
continue
tree = ET.parse(annotation_path)
root = tree.getroot()
country = split.capitalize()
image_path = os.path.join(images_dir, image_file)
crack_type = []
crack_coordinates = []
for obj in root.findall('object'):
crack_type.append(obj.find('name').text)
bndbox = obj.find('bndbox')
coordinates = {
"x_min": int(bndbox.find('xmin').text),
"x_max": int(bndbox.find('xmax').text),
"y_min": int(bndbox.find('ymin').text),
"y_max": int(bndbox.find('ymax').text),
}
crack_coordinates.append(coordinates)
# Assuming images are of uniform size, you might want to adjust this or extract from image directly
image_resolution = {"width": 600, "height": 600, "depth": 3} if country != "India" else {"width": 720,
"height": 720,
"depth": 3}
yield image_id, {
"image_id": image_id,
"country": country,
"type": split,
"image_resolution": image_resolution,
"image_path": image_path,
"crack_type": crack_type,
"crack_coordinates": crack_coordinates,
}
|