# TODO: Address all TODOs and remove all explanatory comments """TODO: Add a description here.""" import csv import json import os from typing import List import datasets import logging import xml.etree.ElementTree as ET import os from PIL import Image # TODO: Add BibTeX citation # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = """\ @InProceedings{huggingface:dataset, title = {A great new dataset}, author={Shixuan An }, year={2024} } """ # TODO: Add description of the dataset here # You can copy an official description _DESCRIPTION = """\ This new dataset is designed to solve this great NLP task and is crafted with a lot of care. """ # TODO: Add a link to an official homepage for the dataset here _HOMEPAGE = "" # TODO: Add the licence for the dataset here if you can find it _LICENSE = "" # TODO: Add link to the official dataset URLs here # The HuggingFace Datasets library doesn't host the datasets but only points to the original files. # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case class RDD2020_Dataset(datasets.GeneratorBasedBuilder): """TODO: Short description of my dataset.""" VERSION = datasets.Version("1.1.0") def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({ "image_id": datasets.Value("string"), "country": datasets.Value("string"), "type": datasets.Value("string"), "image_resolution": datasets.Features({ "width": datasets.Value("int32"), "height": datasets.Value("int32"), "depth": datasets.Value("int32"), }), "image": datasets.Value("string"), #"image_path": datasets.Value("string"), #"pics_array": datasets.Array3D(shape=(None, None, 3), dtype="uint8"), "crack_type": datasets.Sequence(datasets.Value("string")), "crack_coordinates": datasets.Sequence(datasets.Features({ "x_min": datasets.Value("int32"), "x_max": datasets.Value("int32"), "y_min": datasets.Value("int32"), "y_max": datasets.Value("int32"), })), }), homepage='https://data.mendeley.com/datasets/5ty2wb6gvg/1', citation=_CITATION, ) def _split_generators(self, dl_manager): urls_to_download = { "train": 'https://huggingface.co/datasets/ShixuanAn/RDD_2020/resolve/main/train.zip', "test1": "https://huggingface.co/datasets/ShixuanAn/RDD_2020/resolve/main/test1.zip", "test2": "https://huggingface.co/datasets/ShixuanAn/RDD_2020/resolve/main/test2.zip" } downloaded_files = { name: dl_manager.download_and_extract(url) for name, url in urls_to_download.items() } # print( downloaded_files['train']) # files_and_directories = os.listdir(directory_path) # print(files_and_directories) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": os.path.join(downloaded_files["train"], "train"), "split": "train", } ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": os.path.join(downloaded_files["test1"], "test1"), "split": "test1", } ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath":os.path.join(downloaded_files["test2"], "test2"), "split": "test2", } ), ] def _generate_examples(self, filepath, split): for country_dir in ['Czech', 'India', 'Japan']: images_dir = f"{filepath}/{country_dir}/images" annotations_dir = f"{filepath}/{country_dir}/annotations/xmls" if split == "train" else None for image_file in os.listdir(images_dir): if not image_file.endswith('.jpg'): continue image_id = f"{image_file.split('.')[0]}" image_path = os.path.join(images_dir, image_file) # Load the image as a PIL Image object with Image.open(image_path) as img: # If you need to process the image, do it here if annotations_dir: annotation_file = image_id + '.xml' annotation_path = os.path.join(annotations_dir, annotation_file) if not os.path.exists(annotation_path): continue tree = ET.parse(annotation_path) root = tree.getroot() crack_type = [] crack_coordinates = [] for obj in root.findall('object'): crack_type.append(obj.find('name').text) bndbox = obj.find('bndbox') coordinates = { "x_min": int(bndbox.find('xmin').text), "x_max": int(bndbox.find('xmax').text), "y_min": int(bndbox.find('ymin').text), "y_max": int(bndbox.find('ymax').text), } crack_coordinates.append(coordinates) else: crack_type = [] crack_coordinates = [] # Now 'img' is a PIL Image object, we keep it open and yield it yield image_id, { "image_id": image_id, "country": country_dir, "type": split, "image": img.copy(), # We make a copy of the image object "crack_type": crack_type, "crack_coordinates": crack_coordinates, }