code
stringlengths 26
870k
| docstring
stringlengths 1
65.6k
| func_name
stringlengths 1
194
| language
stringclasses 1
value | repo
stringlengths 8
68
| path
stringlengths 5
194
| url
stringlengths 46
254
| license
stringclasses 4
values |
---|---|---|---|---|---|---|---|
def __init__(self, features, activation, bn):
"""Init.
Args:
features (int): number of features
"""
super().__init__()
self.bn = bn
self.groups=1
self.conv1 = nn.Conv2d(
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
)
self.conv2 = nn.Conv2d(
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
)
if self.bn==True:
self.bn1 = nn.BatchNorm2d(features)
self.bn2 = nn.BatchNorm2d(features)
self.activation = activation
self.skip_add = nn.quantized.FloatFunctional() | Init.
Args:
features (int): number of features | __init__ | python | ali-vilab/AnyDoor | ldm/modules/midas/midas/blocks.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/midas/midas/blocks.py | MIT |
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input
Returns:
tensor: output
"""
out = self.activation(x)
out = self.conv1(out)
if self.bn==True:
out = self.bn1(out)
out = self.activation(out)
out = self.conv2(out)
if self.bn==True:
out = self.bn2(out)
if self.groups > 1:
out = self.conv_merge(out)
return self.skip_add.add(out, x) | Forward pass.
Args:
x (tensor): input
Returns:
tensor: output | forward | python | ali-vilab/AnyDoor | ldm/modules/midas/midas/blocks.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/midas/midas/blocks.py | MIT |
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True):
"""Init.
Args:
features (int): number of features
"""
super(FeatureFusionBlock_custom, self).__init__()
self.deconv = deconv
self.align_corners = align_corners
self.groups=1
self.expand = expand
out_features = features
if self.expand==True:
out_features = features//2
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
self.skip_add = nn.quantized.FloatFunctional() | Init.
Args:
features (int): number of features | __init__ | python | ali-vilab/AnyDoor | ldm/modules/midas/midas/blocks.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/midas/midas/blocks.py | MIT |
def forward(self, *xs):
"""Forward pass.
Returns:
tensor: output
"""
output = xs[0]
if len(xs) == 2:
res = self.resConfUnit1(xs[1])
output = self.skip_add.add(output, res)
# output += res
output = self.resConfUnit2(output)
output = nn.functional.interpolate(
output, scale_factor=2, mode="bilinear", align_corners=self.align_corners
)
output = self.out_conv(output)
return output | Forward pass.
Returns:
tensor: output | forward | python | ali-vilab/AnyDoor | ldm/modules/midas/midas/blocks.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/midas/midas/blocks.py | MIT |
def load(self, path):
"""Load model from file.
Args:
path (str): file path
"""
parameters = torch.load(path, map_location=torch.device('cpu'))
if "optimizer" in parameters:
parameters = parameters["model"]
self.load_state_dict(parameters) | Load model from file.
Args:
path (str): file path | load | python | ali-vilab/AnyDoor | ldm/modules/midas/midas/base_model.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/midas/midas/base_model.py | MIT |
def __init__(self, path=None, features=64, backbone="efficientnet_lite3", non_negative=True, exportable=True, channels_last=False, align_corners=True,
blocks={'expand': True}):
"""Init.
Args:
path (str, optional): Path to saved model. Defaults to None.
features (int, optional): Number of features. Defaults to 256.
backbone (str, optional): Backbone network for encoder. Defaults to resnet50
"""
print("Loading weights: ", path)
super(MidasNet_small, self).__init__()
use_pretrained = False if path else True
self.channels_last = channels_last
self.blocks = blocks
self.backbone = backbone
self.groups = 1
features1=features
features2=features
features3=features
features4=features
self.expand = False
if "expand" in self.blocks and self.blocks['expand'] == True:
self.expand = True
features1=features
features2=features*2
features3=features*4
features4=features*8
self.pretrained, self.scratch = _make_encoder(self.backbone, features, use_pretrained, groups=self.groups, expand=self.expand, exportable=exportable)
self.scratch.activation = nn.ReLU(False)
self.scratch.refinenet4 = FeatureFusionBlock_custom(features4, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
self.scratch.refinenet3 = FeatureFusionBlock_custom(features3, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
self.scratch.refinenet2 = FeatureFusionBlock_custom(features2, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
self.scratch.refinenet1 = FeatureFusionBlock_custom(features1, self.scratch.activation, deconv=False, bn=False, align_corners=align_corners)
self.scratch.output_conv = nn.Sequential(
nn.Conv2d(features, features//2, kernel_size=3, stride=1, padding=1, groups=self.groups),
Interpolate(scale_factor=2, mode="bilinear"),
nn.Conv2d(features//2, 32, kernel_size=3, stride=1, padding=1),
self.scratch.activation,
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
nn.ReLU(True) if non_negative else nn.Identity(),
nn.Identity(),
)
if path:
self.load(path) | Init.
Args:
path (str, optional): Path to saved model. Defaults to None.
features (int, optional): Number of features. Defaults to 256.
backbone (str, optional): Backbone network for encoder. Defaults to resnet50 | __init__ | python | ali-vilab/AnyDoor | ldm/modules/midas/midas/midas_net_custom.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/midas/midas/midas_net_custom.py | MIT |
def forward(self, x):
"""Forward pass.
Args:
x (tensor): input data (image)
Returns:
tensor: depth
"""
if self.channels_last==True:
print("self.channels_last = ", self.channels_last)
x.contiguous(memory_format=torch.channels_last)
layer_1 = self.pretrained.layer1(x)
layer_2 = self.pretrained.layer2(layer_1)
layer_3 = self.pretrained.layer3(layer_2)
layer_4 = self.pretrained.layer4(layer_3)
layer_1_rn = self.scratch.layer1_rn(layer_1)
layer_2_rn = self.scratch.layer2_rn(layer_2)
layer_3_rn = self.scratch.layer3_rn(layer_3)
layer_4_rn = self.scratch.layer4_rn(layer_4)
path_4 = self.scratch.refinenet4(layer_4_rn)
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
out = self.scratch.output_conv(path_1)
return torch.squeeze(out, dim=1) | Forward pass.
Args:
x (tensor): input data (image)
Returns:
tensor: depth | forward | python | ali-vilab/AnyDoor | ldm/modules/midas/midas/midas_net_custom.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/midas/midas/midas_net_custom.py | MIT |
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
"""Rezise the sample to ensure the given size. Keeps aspect ratio.
Args:
sample (dict): sample
size (tuple): image size
Returns:
tuple: new size
"""
shape = list(sample["disparity"].shape)
if shape[0] >= size[0] and shape[1] >= size[1]:
return sample
scale = [0, 0]
scale[0] = size[0] / shape[0]
scale[1] = size[1] / shape[1]
scale = max(scale)
shape[0] = math.ceil(scale * shape[0])
shape[1] = math.ceil(scale * shape[1])
# resize
sample["image"] = cv2.resize(
sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
)
sample["disparity"] = cv2.resize(
sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
)
sample["mask"] = cv2.resize(
sample["mask"].astype(np.float32),
tuple(shape[::-1]),
interpolation=cv2.INTER_NEAREST,
)
sample["mask"] = sample["mask"].astype(bool)
return tuple(shape) | Rezise the sample to ensure the given size. Keeps aspect ratio.
Args:
sample (dict): sample
size (tuple): image size
Returns:
tuple: new size | apply_min_size | python | ali-vilab/AnyDoor | ldm/modules/midas/midas/transforms.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/midas/midas/transforms.py | MIT |
def __init__(
self,
width,
height,
resize_target=True,
keep_aspect_ratio=False,
ensure_multiple_of=1,
resize_method="lower_bound",
image_interpolation_method=cv2.INTER_AREA,
):
"""Init.
Args:
width (int): desired output width
height (int): desired output height
resize_target (bool, optional):
True: Resize the full sample (image, mask, target).
False: Resize image only.
Defaults to True.
keep_aspect_ratio (bool, optional):
True: Keep the aspect ratio of the input sample.
Output sample might not have the given width and height, and
resize behaviour depends on the parameter 'resize_method'.
Defaults to False.
ensure_multiple_of (int, optional):
Output width and height is constrained to be multiple of this parameter.
Defaults to 1.
resize_method (str, optional):
"lower_bound": Output will be at least as large as the given size.
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
Defaults to "lower_bound".
"""
self.__width = width
self.__height = height
self.__resize_target = resize_target
self.__keep_aspect_ratio = keep_aspect_ratio
self.__multiple_of = ensure_multiple_of
self.__resize_method = resize_method
self.__image_interpolation_method = image_interpolation_method | Init.
Args:
width (int): desired output width
height (int): desired output height
resize_target (bool, optional):
True: Resize the full sample (image, mask, target).
False: Resize image only.
Defaults to True.
keep_aspect_ratio (bool, optional):
True: Keep the aspect ratio of the input sample.
Output sample might not have the given width and height, and
resize behaviour depends on the parameter 'resize_method'.
Defaults to False.
ensure_multiple_of (int, optional):
Output width and height is constrained to be multiple of this parameter.
Defaults to 1.
resize_method (str, optional):
"lower_bound": Output will be at least as large as the given size.
"upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
"minimal": Scale as least as possible. (Output size might be smaller than given size.)
Defaults to "lower_bound". | __init__ | python | ali-vilab/AnyDoor | ldm/modules/midas/midas/transforms.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/midas/midas/transforms.py | MIT |
def imssave(imgs, img_path):
"""
imgs: list, N images of size WxHxC
"""
img_name, ext = os.path.splitext(os.path.basename(img_path))
for i, img in enumerate(imgs):
if img.ndim == 3:
img = img[:, :, [2, 1, 0]]
new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png')
cv2.imwrite(new_path, img) | imgs: list, N images of size WxHxC | imssave | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/utils_image.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/utils_image.py | MIT |
def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000):
"""
split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size),
and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max)
will be splitted.
Args:
original_dataroot:
taget_dataroot:
p_size: size of small images
p_overlap: patch size in training is a good choice
p_max: images with smaller size than (p_max)x(p_max) keep unchanged.
"""
paths = get_image_paths(original_dataroot)
for img_path in paths:
# img_name, ext = os.path.splitext(os.path.basename(img_path))
img = imread_uint(img_path, n_channels=n_channels)
patches = patches_from_image(img, p_size, p_overlap, p_max)
imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path))) | split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size),
and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max)
will be splitted.
Args:
original_dataroot:
taget_dataroot:
p_size: size of small images
p_overlap: patch size in training is a good choice
p_max: images with smaller size than (p_max)x(p_max) keep unchanged. | split_imageset | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/utils_image.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/utils_image.py | MIT |
def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
'''
Converts a torch Tensor into an image Numpy array of BGR channel order
Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
'''
tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp
tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1]
n_dim = tensor.dim()
if n_dim == 4:
n_img = len(tensor)
img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
elif n_dim == 3:
img_np = tensor.numpy()
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
elif n_dim == 2:
img_np = tensor.numpy()
else:
raise TypeError(
'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
if out_type == np.uint8:
img_np = (img_np * 255.0).round()
# Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
return img_np.astype(out_type) | Converts a torch Tensor into an image Numpy array of BGR channel order
Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default) | tensor2img | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/utils_image.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/utils_image.py | MIT |
def augment_img(img, mode=0):
'''Kai Zhang (github: https://github.com/cszn)
'''
if mode == 0:
return img
elif mode == 1:
return np.flipud(np.rot90(img))
elif mode == 2:
return np.flipud(img)
elif mode == 3:
return np.rot90(img, k=3)
elif mode == 4:
return np.flipud(np.rot90(img, k=2))
elif mode == 5:
return np.rot90(img)
elif mode == 6:
return np.rot90(img, k=2)
elif mode == 7:
return np.flipud(np.rot90(img, k=3)) | Kai Zhang (github: https://github.com/cszn) | augment_img | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/utils_image.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/utils_image.py | MIT |
def augment_img_tensor4(img, mode=0):
'''Kai Zhang (github: https://github.com/cszn)
'''
if mode == 0:
return img
elif mode == 1:
return img.rot90(1, [2, 3]).flip([2])
elif mode == 2:
return img.flip([2])
elif mode == 3:
return img.rot90(3, [2, 3])
elif mode == 4:
return img.rot90(2, [2, 3]).flip([2])
elif mode == 5:
return img.rot90(1, [2, 3])
elif mode == 6:
return img.rot90(2, [2, 3])
elif mode == 7:
return img.rot90(3, [2, 3]).flip([2]) | Kai Zhang (github: https://github.com/cszn) | augment_img_tensor4 | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/utils_image.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/utils_image.py | MIT |
def augment_img_tensor(img, mode=0):
'''Kai Zhang (github: https://github.com/cszn)
'''
img_size = img.size()
img_np = img.data.cpu().numpy()
if len(img_size) == 3:
img_np = np.transpose(img_np, (1, 2, 0))
elif len(img_size) == 4:
img_np = np.transpose(img_np, (2, 3, 1, 0))
img_np = augment_img(img_np, mode=mode)
img_tensor = torch.from_numpy(np.ascontiguousarray(img_np))
if len(img_size) == 3:
img_tensor = img_tensor.permute(2, 0, 1)
elif len(img_size) == 4:
img_tensor = img_tensor.permute(3, 2, 0, 1)
return img_tensor.type_as(img) | Kai Zhang (github: https://github.com/cszn) | augment_img_tensor | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/utils_image.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/utils_image.py | MIT |
def rgb2ycbcr(img, only_y=True):
'''same as matlab rgb2ycbcr
only_y: only return Y channel
Input:
uint8, [0, 255]
float, [0, 1]
'''
in_img_type = img.dtype
img.astype(np.float32)
if in_img_type != np.uint8:
img *= 255.
# convert
if only_y:
rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
else:
rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],
[24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128]
if in_img_type == np.uint8:
rlt = rlt.round()
else:
rlt /= 255.
return rlt.astype(in_img_type) | same as matlab rgb2ycbcr
only_y: only return Y channel
Input:
uint8, [0, 255]
float, [0, 1] | rgb2ycbcr | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/utils_image.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/utils_image.py | MIT |
def ycbcr2rgb(img):
'''same as matlab ycbcr2rgb
Input:
uint8, [0, 255]
float, [0, 1]
'''
in_img_type = img.dtype
img.astype(np.float32)
if in_img_type != np.uint8:
img *= 255.
# convert
rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
[0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
if in_img_type == np.uint8:
rlt = rlt.round()
else:
rlt /= 255.
return rlt.astype(in_img_type) | same as matlab ycbcr2rgb
Input:
uint8, [0, 255]
float, [0, 1] | ycbcr2rgb | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/utils_image.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/utils_image.py | MIT |
def bgr2ycbcr(img, only_y=True):
'''bgr version of rgb2ycbcr
only_y: only return Y channel
Input:
uint8, [0, 255]
float, [0, 1]
'''
in_img_type = img.dtype
img.astype(np.float32)
if in_img_type != np.uint8:
img *= 255.
# convert
if only_y:
rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
else:
rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
[65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128]
if in_img_type == np.uint8:
rlt = rlt.round()
else:
rlt /= 255.
return rlt.astype(in_img_type) | bgr version of rgb2ycbcr
only_y: only return Y channel
Input:
uint8, [0, 255]
float, [0, 1] | bgr2ycbcr | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/utils_image.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/utils_image.py | MIT |
def calculate_ssim(img1, img2, border=0):
'''calculate SSIM
the same outputs as MATLAB's
img1, img2: [0, 255]
'''
#img1 = img1.squeeze()
#img2 = img2.squeeze()
if not img1.shape == img2.shape:
raise ValueError('Input images must have the same dimensions.')
h, w = img1.shape[:2]
img1 = img1[border:h-border, border:w-border]
img2 = img2[border:h-border, border:w-border]
if img1.ndim == 2:
return ssim(img1, img2)
elif img1.ndim == 3:
if img1.shape[2] == 3:
ssims = []
for i in range(3):
ssims.append(ssim(img1[:,:,i], img2[:,:,i]))
return np.array(ssims).mean()
elif img1.shape[2] == 1:
return ssim(np.squeeze(img1), np.squeeze(img2))
else:
raise ValueError('Wrong input image dimensions.') | calculate SSIM
the same outputs as MATLAB's
img1, img2: [0, 255] | calculate_ssim | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/utils_image.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/utils_image.py | MIT |
def modcrop_np(img, sf):
'''
Args:
img: numpy image, WxH or WxHxC
sf: scale factor
Return:
cropped image
'''
w, h = img.shape[:2]
im = np.copy(img)
return im[:w - w % sf, :h - h % sf, ...] | Args:
img: numpy image, WxH or WxHxC
sf: scale factor
Return:
cropped image | modcrop_np | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/bsrgan_light.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/bsrgan_light.py | MIT |
def analytic_kernel(k):
"""Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
k_size = k.shape[0]
# Calculate the big kernels size
big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
# Loop over the small kernel to fill the big one
for r in range(k_size):
for c in range(k_size):
big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
# Crop the edges of the big kernel to ignore very small values and increase run time of SR
crop = k_size // 2
cropped_big_k = big_k[crop:-crop, crop:-crop]
# Normalize to 1
return cropped_big_k / cropped_big_k.sum() | Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper) | analytic_kernel | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/bsrgan_light.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/bsrgan_light.py | MIT |
def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
""" generate an anisotropic Gaussian kernel
Args:
ksize : e.g., 15, kernel size
theta : [0, pi], rotation angle range
l1 : [0.1,50], scaling of eigenvalues
l2 : [0.1,l1], scaling of eigenvalues
If l1 = l2, will get an isotropic Gaussian kernel.
Returns:
k : kernel
"""
v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
V = np.array([[v[0], v[1]], [v[1], -v[0]]])
D = np.array([[l1, 0], [0, l2]])
Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
return k | generate an anisotropic Gaussian kernel
Args:
ksize : e.g., 15, kernel size
theta : [0, pi], rotation angle range
l1 : [0.1,50], scaling of eigenvalues
l2 : [0.1,l1], scaling of eigenvalues
If l1 = l2, will get an isotropic Gaussian kernel.
Returns:
k : kernel | anisotropic_Gaussian | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/bsrgan_light.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/bsrgan_light.py | MIT |
def shift_pixel(x, sf, upper_left=True):
"""shift pixel for super-resolution with different scale factors
Args:
x: WxHxC or WxH
sf: scale factor
upper_left: shift direction
"""
h, w = x.shape[:2]
shift = (sf - 1) * 0.5
xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
if upper_left:
x1 = xv + shift
y1 = yv + shift
else:
x1 = xv - shift
y1 = yv - shift
x1 = np.clip(x1, 0, w - 1)
y1 = np.clip(y1, 0, h - 1)
if x.ndim == 2:
x = interp2d(xv, yv, x)(x1, y1)
if x.ndim == 3:
for i in range(x.shape[-1]):
x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
return x | shift pixel for super-resolution with different scale factors
Args:
x: WxHxC or WxH
sf: scale factor
upper_left: shift direction | shift_pixel | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/bsrgan_light.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/bsrgan_light.py | MIT |
def blur(x, k):
'''
x: image, NxcxHxW
k: kernel, Nx1xhxw
'''
n, c = x.shape[:2]
p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
k = k.repeat(1, c, 1, 1)
k = k.view(-1, 1, k.shape[2], k.shape[3])
x = x.view(1, -1, x.shape[2], x.shape[3])
x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
x = x.view(n, c, x.shape[2], x.shape[3])
return x | x: image, NxcxHxW
k: kernel, Nx1xhxw | blur | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/bsrgan_light.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/bsrgan_light.py | MIT |
def fspecial(filter_type, *args, **kwargs):
'''
python code from:
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
'''
if filter_type == 'gaussian':
return fspecial_gaussian(*args, **kwargs)
if filter_type == 'laplacian':
return fspecial_laplacian(*args, **kwargs) | python code from:
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py | fspecial | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/bsrgan_light.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/bsrgan_light.py | MIT |
def bicubic_degradation(x, sf=3):
'''
Args:
x: HxWxC image, [0, 1]
sf: down-scale factor
Return:
bicubicly downsampled LR image
'''
x = util.imresize_np(x, scale=1 / sf)
return x | Args:
x: HxWxC image, [0, 1]
sf: down-scale factor
Return:
bicubicly downsampled LR image | bicubic_degradation | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/bsrgan_light.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/bsrgan_light.py | MIT |
def srmd_degradation(x, k, sf=3):
''' blur + bicubic downsampling
Args:
x: HxWxC image, [0, 1]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image
Reference:
@inproceedings{zhang2018learning,
title={Learning a single convolutional super-resolution network for multiple degradations},
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={3262--3271},
year={2018}
}
'''
x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
x = bicubic_degradation(x, sf=sf)
return x | blur + bicubic downsampling
Args:
x: HxWxC image, [0, 1]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image
Reference:
@inproceedings{zhang2018learning,
title={Learning a single convolutional super-resolution network for multiple degradations},
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={3262--3271},
year={2018}
} | srmd_degradation | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/bsrgan_light.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/bsrgan_light.py | MIT |
def dpsr_degradation(x, k, sf=3):
''' bicubic downsampling + blur
Args:
x: HxWxC image, [0, 1]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image
Reference:
@inproceedings{zhang2019deep,
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={1671--1681},
year={2019}
}
'''
x = bicubic_degradation(x, sf=sf)
x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
return x | bicubic downsampling + blur
Args:
x: HxWxC image, [0, 1]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image
Reference:
@inproceedings{zhang2019deep,
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={1671--1681},
year={2019}
} | dpsr_degradation | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/bsrgan_light.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/bsrgan_light.py | MIT |
def classical_degradation(x, k, sf=3):
''' blur + downsampling
Args:
x: HxWxC image, [0, 1]/[0, 255]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image
'''
x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
# x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
st = 0
return x[st::sf, st::sf, ...] | blur + downsampling
Args:
x: HxWxC image, [0, 1]/[0, 255]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image | classical_degradation | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/bsrgan_light.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/bsrgan_light.py | MIT |
def add_sharpening(img, weight=0.5, radius=50, threshold=10):
"""USM sharpening. borrowed from real-ESRGAN
Input image: I; Blurry image: B.
1. K = I + weight * (I - B)
2. Mask = 1 if abs(I - B) > threshold, else: 0
3. Blur mask:
4. Out = Mask * K + (1 - Mask) * I
Args:
img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
weight (float): Sharp weight. Default: 1.
radius (float): Kernel size of Gaussian blur. Default: 50.
threshold (int):
"""
if radius % 2 == 0:
radius += 1
blur = cv2.GaussianBlur(img, (radius, radius), 0)
residual = img - blur
mask = np.abs(residual) * 255 > threshold
mask = mask.astype('float32')
soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
K = img + weight * residual
K = np.clip(K, 0, 1)
return soft_mask * K + (1 - soft_mask) * img | USM sharpening. borrowed from real-ESRGAN
Input image: I; Blurry image: B.
1. K = I + weight * (I - B)
2. Mask = 1 if abs(I - B) > threshold, else: 0
3. Blur mask:
4. Out = Mask * K + (1 - Mask) * I
Args:
img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
weight (float): Sharp weight. Default: 1.
radius (float): Kernel size of Gaussian blur. Default: 50.
threshold (int): | add_sharpening | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/bsrgan_light.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/bsrgan_light.py | MIT |
def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
"""
This is the degradation model of BSRGAN from the paper
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
----------
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
sf: scale factor
isp_model: camera ISP model
Returns
-------
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
"""
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
sf_ori = sf
h1, w1 = img.shape[:2]
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
h, w = img.shape[:2]
if h < lq_patchsize * sf or w < lq_patchsize * sf:
raise ValueError(f'img size ({h1}X{w1}) is too small!')
hq = img.copy()
if sf == 4 and random.random() < scale2_prob: # downsample1
if np.random.rand() < 0.5:
img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
interpolation=random.choice([1, 2, 3]))
else:
img = util.imresize_np(img, 1 / 2, True)
img = np.clip(img, 0.0, 1.0)
sf = 2
shuffle_order = random.sample(range(7), 7)
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
if idx1 > idx2: # keep downsample3 last
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
for i in shuffle_order:
if i == 0:
img = add_blur(img, sf=sf)
elif i == 1:
img = add_blur(img, sf=sf)
elif i == 2:
a, b = img.shape[1], img.shape[0]
# downsample2
if random.random() < 0.75:
sf1 = random.uniform(1, 2 * sf)
img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
interpolation=random.choice([1, 2, 3]))
else:
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
k_shifted = shift_pixel(k, sf)
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
img = ndimage.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
img = img[0::sf, 0::sf, ...] # nearest downsampling
img = np.clip(img, 0.0, 1.0)
elif i == 3:
# downsample3
img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
img = np.clip(img, 0.0, 1.0)
elif i == 4:
# add Gaussian noise
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8)
elif i == 5:
# add JPEG noise
if random.random() < jpeg_prob:
img = add_JPEG_noise(img)
elif i == 6:
# add processed camera sensor noise
if random.random() < isp_prob and isp_model is not None:
with torch.no_grad():
img, hq = isp_model.forward(img.copy(), hq)
# add final JPEG compression noise
img = add_JPEG_noise(img)
# random crop
img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
return img, hq | This is the degradation model of BSRGAN from the paper
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
----------
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
sf: scale factor
isp_model: camera ISP model
Returns
-------
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] | degradation_bsrgan | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/bsrgan_light.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/bsrgan_light.py | MIT |
def degradation_bsrgan_variant(image, sf=4, isp_model=None, up=False):
"""
This is the degradation model of BSRGAN from the paper
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
----------
sf: scale factor
isp_model: camera ISP model
Returns
-------
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
"""
image = util.uint2single(image)
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
sf_ori = sf
h1, w1 = image.shape[:2]
image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
h, w = image.shape[:2]
hq = image.copy()
if sf == 4 and random.random() < scale2_prob: # downsample1
if np.random.rand() < 0.5:
image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
interpolation=random.choice([1, 2, 3]))
else:
image = util.imresize_np(image, 1 / 2, True)
image = np.clip(image, 0.0, 1.0)
sf = 2
shuffle_order = random.sample(range(7), 7)
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
if idx1 > idx2: # keep downsample3 last
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
for i in shuffle_order:
if i == 0:
image = add_blur(image, sf=sf)
# elif i == 1:
# image = add_blur(image, sf=sf)
if i == 0:
pass
elif i == 2:
a, b = image.shape[1], image.shape[0]
# downsample2
if random.random() < 0.8:
sf1 = random.uniform(1, 2 * sf)
image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
interpolation=random.choice([1, 2, 3]))
else:
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
k_shifted = shift_pixel(k, sf)
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
image = ndimage.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
image = image[0::sf, 0::sf, ...] # nearest downsampling
image = np.clip(image, 0.0, 1.0)
elif i == 3:
# downsample3
image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
image = np.clip(image, 0.0, 1.0)
elif i == 4:
# add Gaussian noise
image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2)
elif i == 5:
# add JPEG noise
if random.random() < jpeg_prob:
image = add_JPEG_noise(image)
#
# elif i == 6:
# # add processed camera sensor noise
# if random.random() < isp_prob and isp_model is not None:
# with torch.no_grad():
# img, hq = isp_model.forward(img.copy(), hq)
# add final JPEG compression noise
image = add_JPEG_noise(image)
image = util.single2uint(image)
if up:
image = cv2.resize(image, (w1, h1), interpolation=cv2.INTER_CUBIC) # todo: random, as above? want to condition on it then
example = {"image": image}
return example | This is the degradation model of BSRGAN from the paper
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
----------
sf: scale factor
isp_model: camera ISP model
Returns
-------
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] | degradation_bsrgan_variant | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/bsrgan_light.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/bsrgan_light.py | MIT |
def modcrop_np(img, sf):
'''
Args:
img: numpy image, WxH or WxHxC
sf: scale factor
Return:
cropped image
'''
w, h = img.shape[:2]
im = np.copy(img)
return im[:w - w % sf, :h - h % sf, ...] | Args:
img: numpy image, WxH or WxHxC
sf: scale factor
Return:
cropped image | modcrop_np | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/bsrgan.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/bsrgan.py | MIT |
def analytic_kernel(k):
"""Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
k_size = k.shape[0]
# Calculate the big kernels size
big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
# Loop over the small kernel to fill the big one
for r in range(k_size):
for c in range(k_size):
big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
# Crop the edges of the big kernel to ignore very small values and increase run time of SR
crop = k_size // 2
cropped_big_k = big_k[crop:-crop, crop:-crop]
# Normalize to 1
return cropped_big_k / cropped_big_k.sum() | Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper) | analytic_kernel | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/bsrgan.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/bsrgan.py | MIT |
def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
""" generate an anisotropic Gaussian kernel
Args:
ksize : e.g., 15, kernel size
theta : [0, pi], rotation angle range
l1 : [0.1,50], scaling of eigenvalues
l2 : [0.1,l1], scaling of eigenvalues
If l1 = l2, will get an isotropic Gaussian kernel.
Returns:
k : kernel
"""
v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
V = np.array([[v[0], v[1]], [v[1], -v[0]]])
D = np.array([[l1, 0], [0, l2]])
Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
return k | generate an anisotropic Gaussian kernel
Args:
ksize : e.g., 15, kernel size
theta : [0, pi], rotation angle range
l1 : [0.1,50], scaling of eigenvalues
l2 : [0.1,l1], scaling of eigenvalues
If l1 = l2, will get an isotropic Gaussian kernel.
Returns:
k : kernel | anisotropic_Gaussian | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/bsrgan.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/bsrgan.py | MIT |
def shift_pixel(x, sf, upper_left=True):
"""shift pixel for super-resolution with different scale factors
Args:
x: WxHxC or WxH
sf: scale factor
upper_left: shift direction
"""
h, w = x.shape[:2]
shift = (sf - 1) * 0.5
xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
if upper_left:
x1 = xv + shift
y1 = yv + shift
else:
x1 = xv - shift
y1 = yv - shift
x1 = np.clip(x1, 0, w - 1)
y1 = np.clip(y1, 0, h - 1)
if x.ndim == 2:
x = interp2d(xv, yv, x)(x1, y1)
if x.ndim == 3:
for i in range(x.shape[-1]):
x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
return x | shift pixel for super-resolution with different scale factors
Args:
x: WxHxC or WxH
sf: scale factor
upper_left: shift direction | shift_pixel | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/bsrgan.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/bsrgan.py | MIT |
def blur(x, k):
'''
x: image, NxcxHxW
k: kernel, Nx1xhxw
'''
n, c = x.shape[:2]
p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
k = k.repeat(1, c, 1, 1)
k = k.view(-1, 1, k.shape[2], k.shape[3])
x = x.view(1, -1, x.shape[2], x.shape[3])
x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
x = x.view(n, c, x.shape[2], x.shape[3])
return x | x: image, NxcxHxW
k: kernel, Nx1xhxw | blur | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/bsrgan.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/bsrgan.py | MIT |
def fspecial(filter_type, *args, **kwargs):
'''
python code from:
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
'''
if filter_type == 'gaussian':
return fspecial_gaussian(*args, **kwargs)
if filter_type == 'laplacian':
return fspecial_laplacian(*args, **kwargs) | python code from:
https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py | fspecial | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/bsrgan.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/bsrgan.py | MIT |
def bicubic_degradation(x, sf=3):
'''
Args:
x: HxWxC image, [0, 1]
sf: down-scale factor
Return:
bicubicly downsampled LR image
'''
x = util.imresize_np(x, scale=1 / sf)
return x | Args:
x: HxWxC image, [0, 1]
sf: down-scale factor
Return:
bicubicly downsampled LR image | bicubic_degradation | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/bsrgan.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/bsrgan.py | MIT |
def srmd_degradation(x, k, sf=3):
''' blur + bicubic downsampling
Args:
x: HxWxC image, [0, 1]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image
Reference:
@inproceedings{zhang2018learning,
title={Learning a single convolutional super-resolution network for multiple degradations},
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={3262--3271},
year={2018}
}
'''
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
x = bicubic_degradation(x, sf=sf)
return x | blur + bicubic downsampling
Args:
x: HxWxC image, [0, 1]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image
Reference:
@inproceedings{zhang2018learning,
title={Learning a single convolutional super-resolution network for multiple degradations},
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={3262--3271},
year={2018}
} | srmd_degradation | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/bsrgan.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/bsrgan.py | MIT |
def dpsr_degradation(x, k, sf=3):
''' bicubic downsampling + blur
Args:
x: HxWxC image, [0, 1]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image
Reference:
@inproceedings{zhang2019deep,
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={1671--1681},
year={2019}
}
'''
x = bicubic_degradation(x, sf=sf)
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
return x | bicubic downsampling + blur
Args:
x: HxWxC image, [0, 1]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image
Reference:
@inproceedings{zhang2019deep,
title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
pages={1671--1681},
year={2019}
} | dpsr_degradation | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/bsrgan.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/bsrgan.py | MIT |
def classical_degradation(x, k, sf=3):
''' blur + downsampling
Args:
x: HxWxC image, [0, 1]/[0, 255]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image
'''
x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
# x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
st = 0
return x[st::sf, st::sf, ...] | blur + downsampling
Args:
x: HxWxC image, [0, 1]/[0, 255]
k: hxw, double
sf: down-scale factor
Return:
downsampled LR image | classical_degradation | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/bsrgan.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/bsrgan.py | MIT |
def add_sharpening(img, weight=0.5, radius=50, threshold=10):
"""USM sharpening. borrowed from real-ESRGAN
Input image: I; Blurry image: B.
1. K = I + weight * (I - B)
2. Mask = 1 if abs(I - B) > threshold, else: 0
3. Blur mask:
4. Out = Mask * K + (1 - Mask) * I
Args:
img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
weight (float): Sharp weight. Default: 1.
radius (float): Kernel size of Gaussian blur. Default: 50.
threshold (int):
"""
if radius % 2 == 0:
radius += 1
blur = cv2.GaussianBlur(img, (radius, radius), 0)
residual = img - blur
mask = np.abs(residual) * 255 > threshold
mask = mask.astype('float32')
soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
K = img + weight * residual
K = np.clip(K, 0, 1)
return soft_mask * K + (1 - soft_mask) * img | USM sharpening. borrowed from real-ESRGAN
Input image: I; Blurry image: B.
1. K = I + weight * (I - B)
2. Mask = 1 if abs(I - B) > threshold, else: 0
3. Blur mask:
4. Out = Mask * K + (1 - Mask) * I
Args:
img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
weight (float): Sharp weight. Default: 1.
radius (float): Kernel size of Gaussian blur. Default: 50.
threshold (int): | add_sharpening | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/bsrgan.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/bsrgan.py | MIT |
def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
"""
This is the degradation model of BSRGAN from the paper
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
----------
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
sf: scale factor
isp_model: camera ISP model
Returns
-------
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
"""
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
sf_ori = sf
h1, w1 = img.shape[:2]
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
h, w = img.shape[:2]
if h < lq_patchsize * sf or w < lq_patchsize * sf:
raise ValueError(f'img size ({h1}X{w1}) is too small!')
hq = img.copy()
if sf == 4 and random.random() < scale2_prob: # downsample1
if np.random.rand() < 0.5:
img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
interpolation=random.choice([1, 2, 3]))
else:
img = util.imresize_np(img, 1 / 2, True)
img = np.clip(img, 0.0, 1.0)
sf = 2
shuffle_order = random.sample(range(7), 7)
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
if idx1 > idx2: # keep downsample3 last
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
for i in shuffle_order:
if i == 0:
img = add_blur(img, sf=sf)
elif i == 1:
img = add_blur(img, sf=sf)
elif i == 2:
a, b = img.shape[1], img.shape[0]
# downsample2
if random.random() < 0.75:
sf1 = random.uniform(1, 2 * sf)
img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
interpolation=random.choice([1, 2, 3]))
else:
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
k_shifted = shift_pixel(k, sf)
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
img = img[0::sf, 0::sf, ...] # nearest downsampling
img = np.clip(img, 0.0, 1.0)
elif i == 3:
# downsample3
img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
img = np.clip(img, 0.0, 1.0)
elif i == 4:
# add Gaussian noise
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
elif i == 5:
# add JPEG noise
if random.random() < jpeg_prob:
img = add_JPEG_noise(img)
elif i == 6:
# add processed camera sensor noise
if random.random() < isp_prob and isp_model is not None:
with torch.no_grad():
img, hq = isp_model.forward(img.copy(), hq)
# add final JPEG compression noise
img = add_JPEG_noise(img)
# random crop
img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
return img, hq | This is the degradation model of BSRGAN from the paper
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
----------
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
sf: scale factor
isp_model: camera ISP model
Returns
-------
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] | degradation_bsrgan | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/bsrgan.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/bsrgan.py | MIT |
def degradation_bsrgan_variant(image, sf=4, isp_model=None):
"""
This is the degradation model of BSRGAN from the paper
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
----------
sf: scale factor
isp_model: camera ISP model
Returns
-------
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
"""
image = util.uint2single(image)
isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
sf_ori = sf
h1, w1 = image.shape[:2]
image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
h, w = image.shape[:2]
hq = image.copy()
if sf == 4 and random.random() < scale2_prob: # downsample1
if np.random.rand() < 0.5:
image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
interpolation=random.choice([1, 2, 3]))
else:
image = util.imresize_np(image, 1 / 2, True)
image = np.clip(image, 0.0, 1.0)
sf = 2
shuffle_order = random.sample(range(7), 7)
idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
if idx1 > idx2: # keep downsample3 last
shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
for i in shuffle_order:
if i == 0:
image = add_blur(image, sf=sf)
elif i == 1:
image = add_blur(image, sf=sf)
elif i == 2:
a, b = image.shape[1], image.shape[0]
# downsample2
if random.random() < 0.75:
sf1 = random.uniform(1, 2 * sf)
image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
interpolation=random.choice([1, 2, 3]))
else:
k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
k_shifted = shift_pixel(k, sf)
k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
image = image[0::sf, 0::sf, ...] # nearest downsampling
image = np.clip(image, 0.0, 1.0)
elif i == 3:
# downsample3
image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
image = np.clip(image, 0.0, 1.0)
elif i == 4:
# add Gaussian noise
image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25)
elif i == 5:
# add JPEG noise
if random.random() < jpeg_prob:
image = add_JPEG_noise(image)
# elif i == 6:
# # add processed camera sensor noise
# if random.random() < isp_prob and isp_model is not None:
# with torch.no_grad():
# img, hq = isp_model.forward(img.copy(), hq)
# add final JPEG compression noise
image = add_JPEG_noise(image)
image = util.single2uint(image)
example = {"image":image}
return example | This is the degradation model of BSRGAN from the paper
"Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
----------
sf: scale factor
isp_model: camera ISP model
Returns
-------
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] | degradation_bsrgan_variant | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/bsrgan.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/bsrgan.py | MIT |
def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None):
"""
This is an extended degradation model by combining
the degradation models of BSRGAN and Real-ESRGAN
----------
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
sf: scale factor
use_shuffle: the degradation shuffle
use_sharp: sharpening the img
Returns
-------
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
"""
h1, w1 = img.shape[:2]
img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
h, w = img.shape[:2]
if h < lq_patchsize * sf or w < lq_patchsize * sf:
raise ValueError(f'img size ({h1}X{w1}) is too small!')
if use_sharp:
img = add_sharpening(img)
hq = img.copy()
if random.random() < shuffle_prob:
shuffle_order = random.sample(range(13), 13)
else:
shuffle_order = list(range(13))
# local shuffle for noise, JPEG is always the last one
shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6)))
shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13)))
poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1
for i in shuffle_order:
if i == 0:
img = add_blur(img, sf=sf)
elif i == 1:
img = add_resize(img, sf=sf)
elif i == 2:
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
elif i == 3:
if random.random() < poisson_prob:
img = add_Poisson_noise(img)
elif i == 4:
if random.random() < speckle_prob:
img = add_speckle_noise(img)
elif i == 5:
if random.random() < isp_prob and isp_model is not None:
with torch.no_grad():
img, hq = isp_model.forward(img.copy(), hq)
elif i == 6:
img = add_JPEG_noise(img)
elif i == 7:
img = add_blur(img, sf=sf)
elif i == 8:
img = add_resize(img, sf=sf)
elif i == 9:
img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
elif i == 10:
if random.random() < poisson_prob:
img = add_Poisson_noise(img)
elif i == 11:
if random.random() < speckle_prob:
img = add_speckle_noise(img)
elif i == 12:
if random.random() < isp_prob and isp_model is not None:
with torch.no_grad():
img, hq = isp_model.forward(img.copy(), hq)
else:
print('check the shuffle!')
# resize to desired size
img = cv2.resize(img, (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])),
interpolation=random.choice([1, 2, 3]))
# add final JPEG compression noise
img = add_JPEG_noise(img)
# random crop
img, hq = random_crop(img, hq, sf, lq_patchsize)
return img, hq | This is an extended degradation model by combining
the degradation models of BSRGAN and Real-ESRGAN
----------
img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
sf: scale factor
use_shuffle: the degradation shuffle
use_sharp: sharpening the img
Returns
-------
img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] | degradation_bsrgan_plus | python | ali-vilab/AnyDoor | ldm/modules/image_degradation/bsrgan.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/image_degradation/bsrgan.py | MIT |
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self | Overwrite model.train with this function to make sure train/eval mode
does not change anymore. | disabled_train | python | ali-vilab/AnyDoor | ldm/modules/encoders/modules.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/encoders/modules.py | MIT |
def get_timestep_embedding(timesteps, embedding_dim):
"""
This matches the implementation in Denoising Diffusion Probabilistic Models:
From Fairseq.
Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly
from the description in Section 3.5 of "Attention Is All You Need".
"""
assert len(timesteps.shape) == 1
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
emb = emb.to(device=timesteps.device)
emb = timesteps.float()[:, None] * emb[None, :]
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
if embedding_dim % 2 == 1: # zero pad
emb = torch.nn.functional.pad(emb, (0,1,0,0))
return emb | This matches the implementation in Denoising Diffusion Probabilistic Models:
From Fairseq.
Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly
from the description in Section 3.5 of "Attention Is All You Need". | get_timestep_embedding | python | ali-vilab/AnyDoor | ldm/modules/diffusionmodules/model.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/diffusionmodules/model.py | MIT |
def forward(self, x, emb):
"""
Apply the module to `x` given `emb` timestep embeddings.
""" | Apply the module to `x` given `emb` timestep embeddings. | forward | python | ali-vilab/AnyDoor | ldm/modules/diffusionmodules/openaimodel.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/diffusionmodules/openaimodel.py | MIT |
def forward(self, x, emb):
"""
Apply the block to a Tensor, conditioned on a timestep embedding.
:param x: an [N x C x ...] Tensor of features.
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
:return: an [N x C x ...] Tensor of outputs.
"""
return checkpoint(
self._forward, (x, emb), self.parameters(), self.use_checkpoint
) | Apply the block to a Tensor, conditioned on a timestep embedding.
:param x: an [N x C x ...] Tensor of features.
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
:return: an [N x C x ...] Tensor of outputs. | forward | python | ali-vilab/AnyDoor | ldm/modules/diffusionmodules/openaimodel.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/diffusionmodules/openaimodel.py | MIT |
def count_flops_attn(model, _x, y):
"""
A counter for the `thop` package to count the operations in an
attention operation.
Meant to be used like:
macs, params = thop.profile(
model,
inputs=(inputs, timestamps),
custom_ops={QKVAttention: QKVAttention.count_flops},
)
"""
b, c, *spatial = y[0].shape
num_spatial = int(np.prod(spatial))
# We perform two matmuls with the same number of ops.
# The first computes the weight matrix, the second computes
# the combination of the value vectors.
matmul_ops = 2 * b * (num_spatial ** 2) * c
model.total_ops += th.DoubleTensor([matmul_ops]) | A counter for the `thop` package to count the operations in an
attention operation.
Meant to be used like:
macs, params = thop.profile(
model,
inputs=(inputs, timestamps),
custom_ops={QKVAttention: QKVAttention.count_flops},
) | count_flops_attn | python | ali-vilab/AnyDoor | ldm/modules/diffusionmodules/openaimodel.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/diffusionmodules/openaimodel.py | MIT |
def forward(self, qkv):
"""
Apply QKV attention.
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
:return: an [N x (H * C) x T] tensor after attention.
"""
bs, width, length = qkv.shape
assert width % (3 * self.n_heads) == 0
ch = width // (3 * self.n_heads)
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
scale = 1 / math.sqrt(math.sqrt(ch))
weight = th.einsum(
"bct,bcs->bts", q * scale, k * scale
) # More stable with f16 than dividing afterwards
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
a = th.einsum("bts,bcs->bct", weight, v)
return a.reshape(bs, -1, length) | Apply QKV attention.
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
:return: an [N x (H * C) x T] tensor after attention. | forward | python | ali-vilab/AnyDoor | ldm/modules/diffusionmodules/openaimodel.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/diffusionmodules/openaimodel.py | MIT |
def forward(self, qkv):
"""
Apply QKV attention.
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
:return: an [N x (H * C) x T] tensor after attention.
"""
bs, width, length = qkv.shape
assert width % (3 * self.n_heads) == 0
ch = width // (3 * self.n_heads)
q, k, v = qkv.chunk(3, dim=1)
scale = 1 / math.sqrt(math.sqrt(ch))
weight = th.einsum(
"bct,bcs->bts",
(q * scale).view(bs * self.n_heads, ch, length),
(k * scale).view(bs * self.n_heads, ch, length),
) # More stable with f16 than dividing afterwards
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
return a.reshape(bs, -1, length) | Apply QKV attention.
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
:return: an [N x (H * C) x T] tensor after attention. | forward | python | ali-vilab/AnyDoor | ldm/modules/diffusionmodules/openaimodel.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/diffusionmodules/openaimodel.py | MIT |
def convert_to_fp16(self):
"""
Convert the torso of the model to float16.
"""
self.input_blocks.apply(convert_module_to_f16)
self.middle_block.apply(convert_module_to_f16)
self.output_blocks.apply(convert_module_to_f16) | Convert the torso of the model to float16. | convert_to_fp16 | python | ali-vilab/AnyDoor | ldm/modules/diffusionmodules/openaimodel.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/diffusionmodules/openaimodel.py | MIT |
def convert_to_fp32(self):
"""
Convert the torso of the model to float32.
"""
self.input_blocks.apply(convert_module_to_f32)
self.middle_block.apply(convert_module_to_f32)
self.output_blocks.apply(convert_module_to_f32) | Convert the torso of the model to float32. | convert_to_fp32 | python | ali-vilab/AnyDoor | ldm/modules/diffusionmodules/openaimodel.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/diffusionmodules/openaimodel.py | MIT |
def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
"""
Apply the model to an input batch.
:param x: an [N x C x ...] Tensor of inputs.
:param timesteps: a 1-D batch of timesteps.
:param context: conditioning plugged in via crossattn
:param y: an [N] Tensor of labels, if class-conditional.
:return: an [N x C x ...] Tensor of outputs.
"""
assert (y is not None) == (
self.num_classes is not None
), "must specify y if and only if the model is class-conditional"
hs = []
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
if self.num_classes is not None:
assert y.shape[0] == x.shape[0]
emb = emb + self.label_emb(y)
h = x.type(self.dtype)
for module in self.input_blocks:
h = module(h, emb, context)
hs.append(h)
h = self.middle_block(h, emb, context)
for module in self.output_blocks:
h = th.cat([h, hs.pop()], dim=1)
h = module(h, emb, context)
h = h.type(x.dtype)
if self.predict_codebook_ids:
return self.id_predictor(h)
else:
return self.out(h) | Apply the model to an input batch.
:param x: an [N x C x ...] Tensor of inputs.
:param timesteps: a 1-D batch of timesteps.
:param context: conditioning plugged in via crossattn
:param y: an [N] Tensor of labels, if class-conditional.
:return: an [N x C x ...] Tensor of outputs. | forward | python | ali-vilab/AnyDoor | ldm/modules/diffusionmodules/openaimodel.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/diffusionmodules/openaimodel.py | MIT |
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
"""
Create a beta schedule that discretizes the given alpha_t_bar function,
which defines the cumulative product of (1-beta) over time from t = [0,1].
:param num_diffusion_timesteps: the number of betas to produce.
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
produces the cumulative product of (1-beta) up to that
part of the diffusion process.
:param max_beta: the maximum beta to use; use values lower than 1 to
prevent singularities.
"""
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
return np.array(betas) | Create a beta schedule that discretizes the given alpha_t_bar function,
which defines the cumulative product of (1-beta) over time from t = [0,1].
:param num_diffusion_timesteps: the number of betas to produce.
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
produces the cumulative product of (1-beta) up to that
part of the diffusion process.
:param max_beta: the maximum beta to use; use values lower than 1 to
prevent singularities. | betas_for_alpha_bar | python | ali-vilab/AnyDoor | ldm/modules/diffusionmodules/util.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/diffusionmodules/util.py | MIT |
def checkpoint(func, inputs, params, flag):
"""
Evaluate a function without caching intermediate activations, allowing for
reduced memory at the expense of extra compute in the backward pass.
:param func: the function to evaluate.
:param inputs: the argument sequence to pass to `func`.
:param params: a sequence of parameters `func` depends on but does not
explicitly take as arguments.
:param flag: if False, disable gradient checkpointing.
"""
if flag:
args = tuple(inputs) + tuple(params)
return CheckpointFunction.apply(func, len(inputs), *args)
else:
return func(*inputs) | Evaluate a function without caching intermediate activations, allowing for
reduced memory at the expense of extra compute in the backward pass.
:param func: the function to evaluate.
:param inputs: the argument sequence to pass to `func`.
:param params: a sequence of parameters `func` depends on but does not
explicitly take as arguments.
:param flag: if False, disable gradient checkpointing. | checkpoint | python | ali-vilab/AnyDoor | ldm/modules/diffusionmodules/util.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/diffusionmodules/util.py | MIT |
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
if not repeat_only:
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=timesteps.device)
args = timesteps[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
else:
embedding = repeat(timesteps, 'b -> b d', d=dim)
return embedding | Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings. | timestep_embedding | python | ali-vilab/AnyDoor | ldm/modules/diffusionmodules/util.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/diffusionmodules/util.py | MIT |
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module | Zero out the parameters of a module and return it. | zero_module | python | ali-vilab/AnyDoor | ldm/modules/diffusionmodules/util.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/diffusionmodules/util.py | MIT |
def scale_module(module, scale):
"""
Scale the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().mul_(scale)
return module | Scale the parameters of a module and return it. | scale_module | python | ali-vilab/AnyDoor | ldm/modules/diffusionmodules/util.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/diffusionmodules/util.py | MIT |
def mean_flat(tensor):
"""
Take the mean over all non-batch dimensions.
"""
return tensor.mean(dim=list(range(1, len(tensor.shape)))) | Take the mean over all non-batch dimensions. | mean_flat | python | ali-vilab/AnyDoor | ldm/modules/diffusionmodules/util.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/diffusionmodules/util.py | MIT |
def normalization(channels):
"""
Make a standard normalization layer.
:param channels: number of input channels.
:return: an nn.Module for normalization.
"""
return GroupNorm32(32, channels) | Make a standard normalization layer.
:param channels: number of input channels.
:return: an nn.Module for normalization. | normalization | python | ali-vilab/AnyDoor | ldm/modules/diffusionmodules/util.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/diffusionmodules/util.py | MIT |
def conv_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D convolution module.
"""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}") | Create a 1D, 2D, or 3D convolution module. | conv_nd | python | ali-vilab/AnyDoor | ldm/modules/diffusionmodules/util.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/diffusionmodules/util.py | MIT |
def linear(*args, **kwargs):
"""
Create a linear module.
"""
return nn.Linear(*args, **kwargs) | Create a linear module. | linear | python | ali-vilab/AnyDoor | ldm/modules/diffusionmodules/util.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/diffusionmodules/util.py | MIT |
def avg_pool_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D average pooling module.
"""
if dims == 1:
return nn.AvgPool1d(*args, **kwargs)
elif dims == 2:
return nn.AvgPool2d(*args, **kwargs)
elif dims == 3:
return nn.AvgPool3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}") | Create a 1D, 2D, or 3D average pooling module. | avg_pool_nd | python | ali-vilab/AnyDoor | ldm/modules/diffusionmodules/util.py | https://github.com/ali-vilab/AnyDoor/blob/master/ldm/modules/diffusionmodules/util.py | MIT |
def process_pairs(self, ref_image, ref_mask, tar_image, tar_mask, max_ratio = 0.8):
assert mask_score(ref_mask) > 0.90
assert self.check_mask_area(ref_mask) == True
assert self.check_mask_area(tar_mask) == True
# ========= Reference ===========
'''
# similate the case that the mask for reference object is coarse. Seems useless :(
if np.random.uniform(0, 1) < 0.7:
ref_mask_clean = ref_mask.copy()
ref_mask_clean = np.stack([ref_mask_clean,ref_mask_clean,ref_mask_clean],-1)
ref_mask = perturb_mask(ref_mask, 0.6, 0.9)
# select a fake bg to avoid the background leakage
fake_target = tar_image.copy()
h,w = ref_image.shape[0], ref_image.shape[1]
fake_targe = cv2.resize(fake_target, (w,h))
fake_back = np.fliplr(np.flipud(fake_target))
fake_back = self.aug_data_back(fake_back)
ref_image = ref_mask_clean * ref_image + (1-ref_mask_clean) * fake_back
'''
# Get the outline Box of the reference image
ref_box_yyxx = get_bbox_from_mask(ref_mask)
assert self.check_region_size(ref_mask, ref_box_yyxx, ratio = 0.10, mode = 'min') == True
# Filtering background for the reference image
ref_mask_3 = np.stack([ref_mask,ref_mask,ref_mask],-1)
masked_ref_image = ref_image * ref_mask_3 + np.ones_like(ref_image) * 255 * (1-ref_mask_3)
y1,y2,x1,x2 = ref_box_yyxx
masked_ref_image = masked_ref_image[y1:y2,x1:x2,:]
ref_mask = ref_mask[y1:y2,x1:x2]
ratio = np.random.randint(11, 15) / 10
masked_ref_image, ref_mask = expand_image_mask(masked_ref_image, ref_mask, ratio=ratio)
ref_mask_3 = np.stack([ref_mask,ref_mask,ref_mask],-1)
# Padding reference image to square and resize to 224
masked_ref_image = pad_to_square(masked_ref_image, pad_value = 255, random = False)
masked_ref_image = cv2.resize(masked_ref_image.astype(np.uint8), (224,224) ).astype(np.uint8)
ref_mask_3 = pad_to_square(ref_mask_3 * 255, pad_value = 0, random = False)
ref_mask_3 = cv2.resize(ref_mask_3.astype(np.uint8), (224,224) ).astype(np.uint8)
ref_mask = ref_mask_3[:,:,0]
# Augmenting reference image
#masked_ref_image_aug = self.aug_data(masked_ref_image)
# Getting for high-freqency map
masked_ref_image_compose, ref_mask_compose = self.aug_data_mask(masked_ref_image, ref_mask)
masked_ref_image_aug = masked_ref_image_compose.copy()
ref_mask_3 = np.stack([ref_mask_compose,ref_mask_compose,ref_mask_compose],-1)
ref_image_collage = sobel(masked_ref_image_compose, ref_mask_compose/255)
# ========= Training Target ===========
tar_box_yyxx = get_bbox_from_mask(tar_mask)
tar_box_yyxx = expand_bbox(tar_mask, tar_box_yyxx, ratio=[1.1,1.2]) #1.1 1.3
assert self.check_region_size(tar_mask, tar_box_yyxx, ratio = max_ratio, mode = 'max') == True
# Cropping around the target object
tar_box_yyxx_crop = expand_bbox(tar_image, tar_box_yyxx, ratio=[1.3, 3.0])
tar_box_yyxx_crop = box2squre(tar_image, tar_box_yyxx_crop) # crop box
y1,y2,x1,x2 = tar_box_yyxx_crop
cropped_target_image = tar_image[y1:y2,x1:x2,:]
cropped_tar_mask = tar_mask[y1:y2,x1:x2]
tar_box_yyxx = box_in_box(tar_box_yyxx, tar_box_yyxx_crop)
y1,y2,x1,x2 = tar_box_yyxx
# Prepairing collage image
ref_image_collage = cv2.resize(ref_image_collage.astype(np.uint8), (x2-x1, y2-y1))
ref_mask_compose = cv2.resize(ref_mask_compose.astype(np.uint8), (x2-x1, y2-y1))
ref_mask_compose = (ref_mask_compose > 128).astype(np.uint8)
collage = cropped_target_image.copy()
collage[y1:y2,x1:x2,:] = ref_image_collage
collage_mask = cropped_target_image.copy() * 0.0
collage_mask[y1:y2,x1:x2,:] = 1.0
if np.random.uniform(0, 1) < 0.7:
cropped_tar_mask = perturb_mask(cropped_tar_mask)
collage_mask = np.stack([cropped_tar_mask,cropped_tar_mask,cropped_tar_mask],-1)
H1, W1 = collage.shape[0], collage.shape[1]
cropped_target_image = pad_to_square(cropped_target_image, pad_value = 0, random = False).astype(np.uint8)
collage = pad_to_square(collage, pad_value = 0, random = False).astype(np.uint8)
collage_mask = pad_to_square(collage_mask, pad_value = 2, random = False).astype(np.uint8)
H2, W2 = collage.shape[0], collage.shape[1]
cropped_target_image = cv2.resize(cropped_target_image.astype(np.uint8), (512,512)).astype(np.float32)
collage = cv2.resize(collage.astype(np.uint8), (512,512)).astype(np.float32)
collage_mask = cv2.resize(collage_mask.astype(np.uint8), (512,512), interpolation = cv2.INTER_NEAREST).astype(np.float32)
collage_mask[collage_mask == 2] = -1
# Prepairing dataloader items
masked_ref_image_aug = masked_ref_image_aug / 255
cropped_target_image = cropped_target_image / 127.5 - 1.0
collage = collage / 127.5 - 1.0
collage = np.concatenate([collage, collage_mask[:,:,:1] ] , -1)
item = dict(
ref=masked_ref_image_aug.copy(),
jpg=cropped_target_image.copy(),
hint=collage.copy(),
extra_sizes=np.array([H1, W1, H2, W2]),
tar_box_yyxx_crop=np.array(tar_box_yyxx_crop)
)
return item | # similate the case that the mask for reference object is coarse. Seems useless :(
if np.random.uniform(0, 1) < 0.7:
ref_mask_clean = ref_mask.copy()
ref_mask_clean = np.stack([ref_mask_clean,ref_mask_clean,ref_mask_clean],-1)
ref_mask = perturb_mask(ref_mask, 0.6, 0.9)
# select a fake bg to avoid the background leakage
fake_target = tar_image.copy()
h,w = ref_image.shape[0], ref_image.shape[1]
fake_targe = cv2.resize(fake_target, (w,h))
fake_back = np.fliplr(np.flipud(fake_target))
fake_back = self.aug_data_back(fake_back)
ref_image = ref_mask_clean * ref_image + (1-ref_mask_clean) * fake_back | process_pairs | python | ali-vilab/AnyDoor | datasets/base.py | https://github.com/ali-vilab/AnyDoor/blob/master/datasets/base.py | MIT |
def mask_score(mask):
'''Scoring the mask according to connectivity.'''
mask = mask.astype(np.uint8)
if mask.sum() < 10:
return 0
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
cnt_area = [cv2.contourArea(cnt) for cnt in contours]
conc_score = np.max(cnt_area) / sum(cnt_area)
return conc_score | Scoring the mask according to connectivity. | mask_score | python | ali-vilab/AnyDoor | datasets/data_utils.py | https://github.com/ali-vilab/AnyDoor/blob/master/datasets/data_utils.py | MIT |
def sobel(img, mask, thresh = 50):
'''Calculating the high-frequency map.'''
H,W = img.shape[0], img.shape[1]
img = cv2.resize(img,(256,256))
mask = (cv2.resize(mask,(256,256)) > 0.5).astype(np.uint8)
kernel = np.ones((5,5),np.uint8)
mask = cv2.erode(mask, kernel, iterations = 2)
Ksize = 3
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=Ksize)
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=Ksize)
sobel_X = cv2.convertScaleAbs(sobelx)
sobel_Y = cv2.convertScaleAbs(sobely)
scharr = cv2.addWeighted(sobel_X, 0.5, sobel_Y, 0.5, 0)
scharr = np.max(scharr,-1) * mask
scharr[scharr < thresh] = 0.0
scharr = np.stack([scharr,scharr,scharr],-1)
scharr = (scharr.astype(np.float32)/255 * img.astype(np.float32) ).astype(np.uint8)
scharr = cv2.resize(scharr,(W,H))
return scharr | Calculating the high-frequency map. | sobel | python | ali-vilab/AnyDoor | datasets/data_utils.py | https://github.com/ali-vilab/AnyDoor/blob/master/datasets/data_utils.py | MIT |
def resize_and_pad(image, box):
'''Fitting an image to the box region while keeping the aspect ratio.'''
y1,y2,x1,x2 = box
H,W = y2-y1, x2-x1
h,w = image.shape[0], image.shape[1]
r_box = W / H
r_image = w / h
if r_box >= r_image:
h_target = H
w_target = int(w * H / h)
image = cv2.resize(image, (w_target, h_target))
w1 = (W - w_target) // 2
w2 = W - w_target - w1
pad_param = ((0,0),(w1,w2),(0,0))
image = np.pad(image, pad_param, 'constant', constant_values=255)
else:
w_target = W
h_target = int(h * W / w)
image = cv2.resize(image, (w_target, h_target))
h1 = (H-h_target) // 2
h2 = H - h_target - h1
pad_param =((h1,h2),(0,0),(0,0))
image = np.pad(image, pad_param, 'constant', constant_values=255)
return image | Fitting an image to the box region while keeping the aspect ratio. | resize_and_pad | python | ali-vilab/AnyDoor | datasets/data_utils.py | https://github.com/ali-vilab/AnyDoor/blob/master/datasets/data_utils.py | MIT |
def q_x(x_0,t=65):
'''Adding noise for and given image.'''
x_0 = torch.from_numpy(x_0).float() / 127.5 - 1
num_steps = 100
betas = torch.linspace(-6,6,num_steps)
betas = torch.sigmoid(betas)*(0.5e-2 - 1e-5)+1e-5
alphas = 1-betas
alphas_prod = torch.cumprod(alphas,0)
alphas_prod_p = torch.cat([torch.tensor([1]).float(),alphas_prod[:-1]],0)
alphas_bar_sqrt = torch.sqrt(alphas_prod)
one_minus_alphas_bar_log = torch.log(1 - alphas_prod)
one_minus_alphas_bar_sqrt = torch.sqrt(1 - alphas_prod)
noise = torch.randn_like(x_0)
alphas_t = alphas_bar_sqrt[t]
alphas_1_m_t = one_minus_alphas_bar_sqrt[t]
return (alphas_t * x_0 + alphas_1_m_t * noise).numpy() * 127.5 + 127.5 | Adding noise for and given image. | q_x | python | ali-vilab/AnyDoor | datasets/data_utils.py | https://github.com/ali-vilab/AnyDoor/blob/master/datasets/data_utils.py | MIT |
def __init__(self, fg_dir, bg_dir):
self.bg_dir = bg_dir
bg_data = os.listdir(self.bg_dir)
self.bg_data = [i for i in bg_data if 'mask' in i]
self.image_dir = fg_dir
self.data = os.listdir(self.image_dir)
self.size = (512,512)
self.clip_size = (224,224)
'''
Dynamic:
0: Static View, High Quality
1: Multi-view, Low Quality
2: Multi-view, High Quality
'''
self.dynamic = 1 | Dynamic:
0: Static View, High Quality
1: Multi-view, Low Quality
2: Multi-view, High Quality | __init__ | python | ali-vilab/AnyDoor | datasets/dreambooth.py | https://github.com/ali-vilab/AnyDoor/blob/master/datasets/dreambooth.py | MIT |
def reset(self):
"""reset analyser, clear any state"""
# If this flag is set to True, detection is done and conclusion has
# been made
self._mDone = False
self._mTotalChars = 0 # Total characters encountered
# The number of characters whose frequency order is less than 512
self._mFreqChars = 0 | reset analyser, clear any state | reset | python | seanliang/ConvertToUTF8 | chardet/chardistribution.py | https://github.com/seanliang/ConvertToUTF8/blob/master/chardet/chardistribution.py | MIT |
def feed(self, aBuf, aCharLen):
"""feed a character with known length"""
if aCharLen == 2:
# we only care about 2-bytes character in our distribution analysis
order = self.get_order(aBuf)
else:
order = -1
if order >= 0:
self._mTotalChars += 1
# order is valid
if order < self._mTableSize:
if 512 > self._mCharToFreqOrder[order]:
self._mFreqChars += 1 | feed a character with known length | feed | python | seanliang/ConvertToUTF8 | chardet/chardistribution.py | https://github.com/seanliang/ConvertToUTF8/blob/master/chardet/chardistribution.py | MIT |
def get_confidence(self):
"""return confidence based on existing data"""
# if we didn't receive any character in our consideration range,
# return negative answer
if self._mTotalChars <= 0:
return SURE_NO
if self._mTotalChars != self._mFreqChars:
r = (self._mFreqChars / ((self._mTotalChars - self._mFreqChars)
* self._mTypicalDistributionRatio))
if r < SURE_YES:
return r
# normalize confidence (we don't want to be 100% sure)
return SURE_YES | return confidence based on existing data | get_confidence | python | seanliang/ConvertToUTF8 | chardet/chardistribution.py | https://github.com/seanliang/ConvertToUTF8/blob/master/chardet/chardistribution.py | MIT |
async def test_edgeql_expr_op_04(self):
await self.assert_query_result(
r'''SELECT -1 + 2 * 3 - 5 - 6.0 / 2;''',
[-3],
)
await self.assert_query_result(
r'''
SELECT
-1 + 2 * 3 - 5 - 6.0 / 2 > 0
OR 25 % 4 = 3 AND 42 IN {12, 42, 14};
''',
[False],
)
await self.assert_query_result(
r'''SELECT (-1 + 2) * 3 - (5 - 6.0) / 2;''',
[3.5],
)
await self.assert_query_result(
r'''
SELECT
((-1 + 2) * 3 - (5 - 6.0) / 2 > 0 OR 25 % 4 = 3)
AND 42 IN {12, 42, 14};
''',
[True],
)
await self.assert_query_result(
r'''SELECT 1 * 0.2;''',
[0.2],
)
await self.assert_query_result(
r'''SELECT 0.2 * 1;''',
[0.2],
)
await self.assert_query_result(
r'''SELECT -0.2 * 1;''',
[-0.2],
)
await self.assert_query_result(
r'''SELECT 0.2 + 1;''',
[1.2],
)
await self.assert_query_result(
r'''SELECT 1 + 0.2;''',
[1.2],
)
await self.assert_query_result(
r'''SELECT -0.2 - 1;''',
[-1.2],
)
await self.assert_query_result(
r'''SELECT -1 - 0.2;''',
[-1.2],
)
await self.assert_query_result(
r'''SELECT -1 / 0.2;''',
[-5],
)
await self.assert_query_result(
r'''SELECT 0.2 / -1;''',
[-0.2],
)
await self.assert_query_result(
r'''SELECT 5 // 2;''',
[2],
)
await self.assert_query_result(
r'''SELECT 5.5 // 1.2;''',
[4.0],
)
await self.assert_query_result(
r'''SELECT (INTROSPECT TYPEOF (5.5 // 1.2)).name;''',
['std::float64'],
)
await self.assert_query_result(
r'''SELECT -9.6 // 2;''',
[-5.0],
)
await self.assert_query_result(
r'''SELECT (INTROSPECT TYPEOF (<float32>-9.6 // 2)).name;''',
['std::float64'],
) | ,
[False],
)
await self.assert_query_result(
r'''SELECT (-1 + 2) * 3 - (5 - 6.0) / 2;''',
[3.5],
)
await self.assert_query_result(
r | test_edgeql_expr_op_04 | python | geldata/gel | tests/test_edgeql_expressions.py | https://github.com/geldata/gel/blob/master/tests/test_edgeql_expressions.py | Apache-2.0 |
async def test_edgeql_expr_op_14(self):
await self.assert_query_result(
r"""
SELECT _ := {9, 1, 13}
FILTER _ IN {11, 12, 13};
""",
{13},
)
await self.assert_query_result(
r"""
SELECT _ := {9, 1, 13, 11}
FILTER _ IN {11, 12, 13};
""",
{11, 13},
) | ,
{13},
)
await self.assert_query_result(
r | test_edgeql_expr_op_14 | python | geldata/gel | tests/test_edgeql_expressions.py | https://github.com/geldata/gel/blob/master/tests/test_edgeql_expressions.py | Apache-2.0 |
async def test_edgeql_expr_op_15(self):
await self.assert_query_result(
r"""
SELECT _ := {9, 12, 13}
FILTER _ NOT IN {11, 12, 13};
""",
{9},
)
await self.assert_query_result(
r"""
SELECT _ := {9, 1, 13, 11}
FILTER _ NOT IN {11, 12, 13};
""",
{1, 9},
) | ,
{9},
)
await self.assert_query_result(
r | test_edgeql_expr_op_15 | python | geldata/gel | tests/test_edgeql_expressions.py | https://github.com/geldata/gel/blob/master/tests/test_edgeql_expressions.py | Apache-2.0 |
async def test_edgeql_expr_op_16(self):
await self.assert_query_result(
r"""
WITH a := {11, 12, 13}
SELECT _ := {9, 1, 13}
FILTER _ IN a;
""",
{13},
)
await self.assert_query_result(
r"""
WITH MODULE schema
SELECT _ := {9, 1, 13}
FILTER _ IN (
# Lengths of names for schema::Map, Type, and Array are
# 11, 12, and 13, respectively.
len((
SELECT ObjectType
FILTER ObjectType.name LIKE 'schema::%'
).name)
);
""",
{13},
) | ,
{13},
)
await self.assert_query_result(
r | test_edgeql_expr_op_16 | python | geldata/gel | tests/test_edgeql_expressions.py | https://github.com/geldata/gel/blob/master/tests/test_edgeql_expressions.py | Apache-2.0 |
async def test_edgeql_expr_op_17(self):
await self.assert_query_result(
r"""
WITH a := {11, 12, 13}
SELECT _ := {9, 1, 13}
FILTER _ NOT IN a;
""",
{9, 1},
)
await self.assert_query_result(
r"""
WITH MODULE schema
SELECT _ := {9, 1, 13}
FILTER _ NOT IN (
# Lengths of names for schema::Map, Type, and Array are
# 11, 12, and 13, respectively.
len((
SELECT ObjectType
FILTER ObjectType.name LIKE 'schema::%'
).name)
);
""",
{9, 1},
) | ,
{9, 1},
)
await self.assert_query_result(
r | test_edgeql_expr_op_17 | python | geldata/gel | tests/test_edgeql_expressions.py | https://github.com/geldata/gel/blob/master/tests/test_edgeql_expressions.py | Apache-2.0 |
async def test_edgeql_expr_op_21(self):
# There was a bug that caused `=` to not always be equivalent
# to `>= AND <=` due to difference in casting decimals to
# floats or floats into decimal.
await self.assert_query_result(
r'''
SELECT 0.797693134862311111111n = <decimal>0.797693134862311111111;
''',
[False],
)
await self.assert_query_result(
r'''
SELECT
0.797693134862311111111n >= <decimal>0.797693134862311111111
AND
0.797693134862311111111n <= <decimal>0.797693134862311111111;
''',
[False],
) | ,
[False],
)
await self.assert_query_result(
r | test_edgeql_expr_op_21 | python | geldata/gel | tests/test_edgeql_expressions.py | https://github.com/geldata/gel/blob/master/tests/test_edgeql_expressions.py | Apache-2.0 |
async def test_edgeql_expr_valid_comp_04(self):
# bytes and uuids are orderable in the same way as a "similar"
# ascii string. For uuid this works out because ord('9') < ord('a').
#
# Motivation: In some sense str and uuid are a special kind of
# byte-string. A different way of representing them would be
# as arrays (sequences) of bytes. Conceptually, as long as the
# individual elements of these arrays are orderable (and a
# total ordering can be naturally defined on actual bytes),
# the array of these elements is also orderable.
# "ordered" uuid-like strings
uuids = [
'04b4318e-1a01-41e4-b29c-b57b94db9402',
'94b4318e-1a01-41e4-b29c-b57b94db9402',
'a4b4318e-1a01-41e4-b29c-b57b94db9402',
'a5b4318e-1a01-41e4-b29c-b57b94db9402',
'f4b4318e-1a01-41e4-b29c-b57b94db9402',
'f4b4318e-1a01-41e4-b29c-b67b94db9402',
'f4b4318e-1a01-41e4-b29c-b68b94db9402',
]
for left in uuids[:-1]:
for right in uuids[1:]:
for op in ('>=', '<', '<=', '>'):
query = f'''
SELECT (b'{left}' {op} b'{right}') =
('{left}' {op} '{right}');
'''
await self.assert_query_result(
query, {True}, msg=query)
query = f'''
SELECT (<uuid>'{left}' {op} <uuid>'{right}') =
('{left}' {op} '{right}');
'''
await self.assert_query_result(
query, {True}, msg=query) | await self.assert_query_result(
query, {True}, msg=query)
query = f | test_edgeql_expr_valid_comp_04 | python | geldata/gel | tests/test_edgeql_expressions.py | https://github.com/geldata/gel/blob/master/tests/test_edgeql_expressions.py | Apache-2.0 |
async def test_edgeql_expr_valid_order_01(self):
# JSON ordering is a bit difficult to conceptualize across
# non-homogeneous JSON types, but it is stable and can be used
# reliably in ORDER BY clauses. In fact, many tests rely on this.
await self.assert_query_result(
r'''SELECT <json>2 < <json>'2';''',
[False],
)
await self.assert_query_result(
r'''
WITH X := {<json>1, <json>True, <json>'1'}
SELECT X ORDER BY X;
''',
# JSON
['1', 1, True],
# Binary
['"1"', '1', 'true'],
)
await self.assert_query_result(
r'''
WITH X := {
<json>1,
<json>2,
<json>'b',
to_json('{"a":1,"b":2}'),
to_json('{"b":3,"a":1,"b":2}'),
to_json('["a", 1, "b", 2]')
}
SELECT X ORDER BY X;
''',
# JSON
['b', 1, 2, ['a', 1, 'b', 2], {'a': 1, 'b': 2}, {'a': 1, 'b': 2}],
# Binary
[
'"b"', '1', '2', '["a", 1, "b", 2]',
'{"a": 1, "b": 2}', '{"a": 1, "b": 2}'
],
) | ,
# JSON
['1', 1, True],
# Binary
['"1"', '1', 'true'],
)
await self.assert_query_result(
r | test_edgeql_expr_valid_order_01 | python | geldata/gel | tests/test_edgeql_expressions.py | https://github.com/geldata/gel/blob/master/tests/test_edgeql_expressions.py | Apache-2.0 |
async def test_edgeql_expr_valid_order_06(self):
# make sure various date&time scalaras are usable in order by clause
await self.assert_query_result(
r'''
WITH A := <datetime>{
"2018-05-07T20:01:22.306916+00:00",
"2017-05-07T20:01:22.306916+00:00"
}
SELECT A ORDER BY A;
''',
[
"2017-05-07T20:01:22.306916+00:00",
"2018-05-07T20:01:22.306916+00:00",
],
)
await self.assert_query_result(
r'''
WITH A := <cal::local_datetime>{
"2018-05-07T20:01:22.306916",
"2017-05-07T20:01:22.306916"
}
SELECT A ORDER BY A;
''',
[
"2017-05-07T20:01:22.306916",
"2018-05-07T20:01:22.306916",
],
)
await self.assert_query_result(
r'''
WITH A := <cal::local_date>{
"2018-05-07",
"2017-05-07"
}
SELECT A ORDER BY A;
''',
[
"2017-05-07",
"2018-05-07",
],
)
await self.assert_query_result(
r'''
WITH A := <cal::local_time>{
"20:01:22.306916",
"19:01:22.306916"
}
SELECT A ORDER BY A;
''',
[
"19:01:22.306916",
"20:01:22.306916",
],
)
await self.assert_query_result(
r'''
WITH A := to_str(
<duration>{
"20:01:22.306916",
"19:01:22.306916"
}
)
SELECT A ORDER BY A;
''',
[
"PT19H1M22.306916S",
"PT20H1M22.306916S",
]
) | ,
[
"2017-05-07T20:01:22.306916+00:00",
"2018-05-07T20:01:22.306916+00:00",
],
)
await self.assert_query_result(
r | test_edgeql_expr_valid_order_06 | python | geldata/gel | tests/test_edgeql_expressions.py | https://github.com/geldata/gel/blob/master/tests/test_edgeql_expressions.py | Apache-2.0 |
async def test_edgeql_expr_valid_arithmetic_08(self):
# Test (5) - decimal is incompatible with everything except integers
expected_error_msg = 'cannot be applied to operands'
for left in get_test_values(anynumeric=True):
for right in get_test_values(anyint=False, anynumeric=False):
for op in ['+', '-', '*', '/', '//', '%', '^']:
query = f"""SELECT {left} {op} {right};"""
with self.assertRaisesRegex(edgedb.QueryError,
expected_error_msg,
msg=query):
async with self.con.transaction():
await self.con.execute(query)
for left, ldesc in get_test_items(anynumeric=True):
for right in get_test_values(anyint=True):
for op in ['+', '-', '*', '%']:
# bigint/decimal are "contagious"
await self.assert_query_result(
f"""
SELECT ({left} {op} {right}) IS {ldesc.typename};
""",
[True],
)
await self.assert_query_result(
f"""
SELECT ({right} {op} {left}) IS {ldesc.typename};
""",
[True],
)
for left, ldesc in get_test_items(anynumeric=True):
for right in get_test_values(anyint=True):
op = '//'
await self.assert_query_result(
f"""
SELECT ({left} {op} {right}) IS {ldesc.typename};
""",
[True],
)
await self.assert_query_result(
f"""
SELECT ({right} {op} {left}) IS {ldesc.typename};
""",
[True],
)
for left in get_test_values(anynumeric=True):
for right in get_test_values(anyint=True):
# regular division and power with anynumeric always
# results in decimal.
for op in ['/', '^']:
await self.assert_query_result(
f"""
SELECT ({left} {op} {right}) IS decimal;
""",
[True],
)
await self.assert_query_result(
f"""
SELECT ({right} {op} {left}) IS decimal;
""",
[True],
) | ,
[True],
)
await self.assert_query_result(
f | test_edgeql_expr_valid_arithmetic_08 | python | geldata/gel | tests/test_edgeql_expressions.py | https://github.com/geldata/gel/blob/master/tests/test_edgeql_expressions.py | Apache-2.0 |
async def test_edgeql_expr_valid_setop_06(self):
# decimals are tricky because integers implicitly cast into
# them and floats don't
expected_error_msg = "operator 'UNION' cannot be applied"
# decimal UNION numerics
for left, left_t in get_test_items(anynumeric=True):
for right in get_test_values(anyint=True):
query = f"""SELECT count({left} UNION {right});"""
# decimals and integers can be UNIONed in any
# combination
await self.assert_query_result(query, [2])
query = f"""
SELECT (INTROSPECT TYPEOF ({left} UNION {right})).name;
"""
# this operation should always be valid
await self.assert_query_result(
query, {f'std::{left_t.typename}'})
for left in get_test_values(anynumeric=True):
for right in get_test_values(anyfloat=True):
query = f"""SELECT count({left} UNION {right});"""
# decimal UNION float is illegal
with self.assertRaisesRegex(edgedb.QueryError,
expected_error_msg,
msg=query):
async with self.con.transaction():
await self.con.execute(query) | # this operation should always be valid
await self.assert_query_result(
query, {f'std::{left_t.typename}'})
for left in get_test_values(anynumeric=True):
for right in get_test_values(anyfloat=True):
query = f"""SELECT count({left} UNION {right}); | test_edgeql_expr_valid_setop_06 | python | geldata/gel | tests/test_edgeql_expressions.py | https://github.com/geldata/gel/blob/master/tests/test_edgeql_expressions.py | Apache-2.0 |
async def test_edgeql_expr_polymorphic_01(self):
await self.con.execute(r"""
SELECT Text {
[IS Issue].number,
[IS Issue].related_to,
[IS Issue].`priority`,
[IS Comment].owner: {
name
}
};
""")
await self.con.execute(r"""
SELECT Owned {
[IS Named].name
};
""") | )
await self.con.execute(r | test_edgeql_expr_polymorphic_01 | python | geldata/gel | tests/test_edgeql_expressions.py | https://github.com/geldata/gel/blob/master/tests/test_edgeql_expressions.py | Apache-2.0 |
async def test_edgeql_expr_cast_10(self):
await self.assert_query_result(
r'''
SELECT <array<tuple<EmulatedEnum>>>
(SELECT [('v1',)] ++ [('v2',)])
''',
[[["v1"], ["v2"]]],
)
await self.assert_query_result(
r'''
SELECT <tuple<array<EmulatedEnum>>>
(SELECT (['v1'] ++ ['v2'],))
''',
[[["v1", "v2"]]],
) | ,
[[["v1"], ["v2"]]],
)
await self.assert_query_result(
r | test_edgeql_expr_cast_10 | python | geldata/gel | tests/test_edgeql_expressions.py | https://github.com/geldata/gel/blob/master/tests/test_edgeql_expressions.py | Apache-2.0 |
async def test_edgeql_expr_set_04(self):
await self.assert_query_result(
r"""
select _ := {1, 2, 3, 4} except 2
order by _;
""",
[1, 3, 4],
)
await self.assert_query_result(
r"""
select _ := {1, 2, 3, 4} except 2 except 4
order by _;
""",
[1, 3],
)
await self.assert_query_result(
r"""
select _ := {1, 2, 3, 4} except {1, 2}
order by _;
""",
[3, 4],
)
await self.assert_query_result(
r"""
select _ := {1, 2, 3, 4} except {4, 5}
order by _;
""",
[1, 2, 3],
)
await self.assert_query_result(
r"""
select _ := {1, 2, 3, 4} except {5, 6}
order by _;
""",
[1, 2, 3, 4],
)
await self.assert_query_result(
r"""
select _ := {1, 1, 1, 2, 2, 3} except {1, 3, 3, 2}
order by _;
""",
[1, 1, 2],
) | ,
[1, 3, 4],
)
await self.assert_query_result(
r | test_edgeql_expr_set_04 | python | geldata/gel | tests/test_edgeql_expressions.py | https://github.com/geldata/gel/blob/master/tests/test_edgeql_expressions.py | Apache-2.0 |
async def test_edgeql_expr_set_06(self):
await self.assert_query_result(
r"""
select _ := {1, 2, 3, 4} intersect 2
order by _;
""",
[2],
)
await self.assert_query_result(
r"""
select _ :=
{1, 2, 3, 4} intersect {2, 3, 4} intersect {2, 4}
order by _;
""",
[2, 4],
)
await self.assert_query_result(
r"""
select _ := {1, 2, 3, 4} intersect {5, 6}
order by _;
""",
[],
)
await self.assert_query_result(
r"""
select _ := {1, 2, 3, 4} intersect 4
order by _;
""",
[4],
)
await self.assert_query_result(
r"""
select _ := {1, 1, 1, 2, 2, 3} intersect {1, 3, 3, 2, 2, 5}
order by _;
""",
[1, 2, 2, 3],
) | ,
[2],
)
await self.assert_query_result(
r | test_edgeql_expr_set_06 | python | geldata/gel | tests/test_edgeql_expressions.py | https://github.com/geldata/gel/blob/master/tests/test_edgeql_expressions.py | Apache-2.0 |
async def test_edgeql_expr_tuple_13(self):
await self.assert_query_result(
r"""
SELECT (1, ('a', 'b', (0.1, 0.2)), 2, 3);
""",
[[1, ['a', 'b', [0.1, 0.2]], 2, 3]],
)
await self.assert_query_result(
r"""
# should be the same as above
WITH _ := (1, ('a', 'b', (0.1, 0.2)), 2, 3)
SELECT _;
""",
[[1, ['a', 'b', [0.1, 0.2]], 2, 3]],
) | ,
[[1, ['a', 'b', [0.1, 0.2]], 2, 3]],
)
await self.assert_query_result(
r | test_edgeql_expr_tuple_13 | python | geldata/gel | tests/test_edgeql_expressions.py | https://github.com/geldata/gel/blob/master/tests/test_edgeql_expressions.py | Apache-2.0 |
async def test_edgeql_expr_tuple_indirection_01(self):
await self.assert_query_result(
r"""
SELECT ('foo', 42).0;
""",
['foo'],
)
await self.assert_query_result(
r"""
SELECT ('foo', 42).1;
""",
[42],
) | ,
['foo'],
)
await self.assert_query_result(
r | test_edgeql_expr_tuple_indirection_01 | python | geldata/gel | tests/test_edgeql_expressions.py | https://github.com/geldata/gel/blob/master/tests/test_edgeql_expressions.py | Apache-2.0 |
async def test_edgeql_expr_range_empty_01(self):
# Test handling of empty ranges
for st in ['int32', 'int64', 'float32', 'float64', 'decimal']:
await self.assert_query_result(
f'''
select
range(
<{st}>1, <{st}>1
) = range(<{st}>{{}}, empty := true);
''',
[True],
)
await self.assert_query_result(
f'''
select
range(
<{st}>1,
<{st}>1,
inc_lower := false,
inc_upper := true,
) = range(<{st}>{{}}, empty := true);
''',
[True],
)
await self.assert_query_result(
f'''
select
range(<{st}>1, <{st}>1, inc_upper := true)
= range(<{st}>{{}}, empty := true);
''',
[False],
)
await self.assert_query_result(
f'''
select
range_is_empty(
range(
<{st}>{{}},
empty := true,
)
)
''',
[True],
)
await self.assert_query_result(
f'''
select
range_is_empty(
range(
<{st}>{{}},
empty := false,
)
)
''',
[False],
) | ,
[True],
)
await self.assert_query_result(
f | test_edgeql_expr_range_empty_01 | python | geldata/gel | tests/test_edgeql_expressions.py | https://github.com/geldata/gel/blob/master/tests/test_edgeql_expressions.py | Apache-2.0 |
async def test_edgeql_expr_range_05(self):
# Test addition for numeric ranges.
for st in ['int32', 'int64', 'float32', 'float64', 'decimal']:
await self.assert_query_result(
f'''
select range(<{st}>1, <{st}>5) + range(<{st}>2, <{st}>7) =
range(<{st}>1, <{st}>7);
''',
[True],
)
await self.assert_query_result(
f'''
select
range(<{st}>{{}}, <{st}>5) + range(<{st}>2, <{st}>7) =
range(<{st}>{{}}, <{st}>7);
''',
[True],
)
await self.assert_query_result(
f'''
select range(<{st}>2) + range(<{st}>1, <{st}>7) =
range(<{st}>1);
''',
[True],
) | ,
[True],
)
await self.assert_query_result(
f | test_edgeql_expr_range_05 | python | geldata/gel | tests/test_edgeql_expressions.py | https://github.com/geldata/gel/blob/master/tests/test_edgeql_expressions.py | Apache-2.0 |
async def test_edgeql_expr_range_06(self):
# Test intersection for numeric ranges.
for st in ['int32', 'int64', 'float32', 'float64', 'decimal']:
await self.assert_query_result(
f'''
select range(<{st}>1, <{st}>5) * range(<{st}>2, <{st}>7) =
range(<{st}>2, <{st}>5);
''',
[True],
)
await self.assert_query_result(
f'''
select
range(<{st}>{{}}, <{st}>5) * range(<{st}>2, <{st}>7) =
range(<{st}>2, <{st}>5);
''',
[True],
)
await self.assert_query_result(
f'''
select range(<{st}>2) * range(<{st}>1, <{st}>7) =
range(<{st}>2, <{st}>7);
''',
[True],
) | ,
[True],
)
await self.assert_query_result(
f | test_edgeql_expr_range_06 | python | geldata/gel | tests/test_edgeql_expressions.py | https://github.com/geldata/gel/blob/master/tests/test_edgeql_expressions.py | Apache-2.0 |
async def test_edgeql_expr_range_07(self):
# Test subtraction for numeric ranges.
for st in ['int32', 'int64', 'float32', 'float64', 'decimal']:
await self.assert_query_result(
f'''
select range(<{st}>1, <{st}>5) - range(<{st}>2, <{st}>7) =
range(<{st}>1, <{st}>2);
''',
[True],
)
await self.assert_query_result(
f'''
select
range(<{st}>{{}}, <{st}>5) - range(<{st}>2, <{st}>7) =
range(<{st}>{{}}, <{st}>2);
''',
[True],
)
await self.assert_query_result(
f'''
select range(<{st}>2) - range(<{st}>1, <{st}>7) =
range(<{st}>7);
''',
[True],
) | ,
[True],
)
await self.assert_query_result(
f | test_edgeql_expr_range_07 | python | geldata/gel | tests/test_edgeql_expressions.py | https://github.com/geldata/gel/blob/master/tests/test_edgeql_expressions.py | Apache-2.0 |
async def test_edgeql_expr_range_12(self):
# Test addition for datetime ranges.
await self.assert_query_result(
f'''
select range(<datetime>'2022-06-06T00:00:00Z',
<datetime>'2022-06-15T00:00:00Z') +
range(<datetime>'2022-06-10T00:00:00Z',
<datetime>'2022-06-17T00:00:00Z') =
range(<datetime>'2022-06-06T00:00:00Z',
<datetime>'2022-06-17T00:00:00Z');
''',
[True],
)
await self.assert_query_result(
f'''
select
range(<datetime>{{}},
<datetime>'2022-06-15T00:00:00Z') +
range(<datetime>'2022-06-10T00:00:00Z',
<datetime>'2022-06-17T00:00:00Z') =
range(<datetime>{{}},
<datetime>'2022-06-17T00:00:00Z');
''',
[True],
)
await self.assert_query_result(
f'''
select range(<datetime>'2022-06-10T00:00:00Z') +
range(<datetime>'2022-06-06T00:00:00Z',
<datetime>'2022-06-17T00:00:00Z') =
range(<datetime>'2022-06-06T00:00:00Z');
''',
[True],
) | ,
[True],
)
await self.assert_query_result(
f | test_edgeql_expr_range_12 | python | geldata/gel | tests/test_edgeql_expressions.py | https://github.com/geldata/gel/blob/master/tests/test_edgeql_expressions.py | Apache-2.0 |
async def test_edgeql_expr_range_13(self):
# Test intersection for datetime ranges.
await self.assert_query_result(
f'''
select range(<datetime>'2022-06-06T00:00:00Z',
<datetime>'2022-06-15T00:00:00Z') *
range(<datetime>'2022-06-10T00:00:00Z',
<datetime>'2022-06-17T00:00:00Z') =
range(<datetime>'2022-06-10T00:00:00Z',
<datetime>'2022-06-15T00:00:00Z');
''',
[True],
)
await self.assert_query_result(
f'''
select
range(<datetime>{{}},
<datetime>'2022-06-15T00:00:00Z') *
range(<datetime>'2022-06-10T00:00:00Z',
<datetime>'2022-06-17T00:00:00Z') =
range(<datetime>'2022-06-10T00:00:00Z',
<datetime>'2022-06-15T00:00:00Z');
''',
[True],
)
await self.assert_query_result(
f'''
select range(<datetime>'2022-06-10T00:00:00Z') *
range(<datetime>'2022-06-06T00:00:00Z',
<datetime>'2022-06-17T00:00:00Z') =
range(<datetime>'2022-06-10T00:00:00Z',
<datetime>'2022-06-17T00:00:00Z');
''',
[True],
) | ,
[True],
)
await self.assert_query_result(
f | test_edgeql_expr_range_13 | python | geldata/gel | tests/test_edgeql_expressions.py | https://github.com/geldata/gel/blob/master/tests/test_edgeql_expressions.py | Apache-2.0 |
async def test_edgeql_expr_range_14(self):
# Test subtraction for datetime ranges.
await self.assert_query_result(
f'''
select range(<datetime>'2022-06-06T00:00:00Z',
<datetime>'2022-06-15T00:00:00Z') -
range(<datetime>'2022-06-10T00:00:00Z',
<datetime>'2022-06-17T00:00:00Z') =
range(<datetime>'2022-06-06T00:00:00Z',
<datetime>'2022-06-10T00:00:00Z');
''',
[True],
)
await self.assert_query_result(
f'''
select
range(<datetime>{{}}, <datetime>'2022-06-15T00:00:00Z') -
range(<datetime>'2022-06-10T00:00:00Z',
<datetime>'2022-06-17T00:00:00Z') =
range(<datetime>{{}}, <datetime>'2022-06-10T00:00:00Z');
''',
[True],
)
await self.assert_query_result(
f'''
select range(<datetime>'2022-06-10T00:00:00Z') -
range(<datetime>'2022-06-06T00:00:00Z',
<datetime>'2022-06-17T00:00:00Z') =
range(<datetime>'2022-06-17T00:00:00Z');
''',
[True],
) | ,
[True],
)
await self.assert_query_result(
f | test_edgeql_expr_range_14 | python | geldata/gel | tests/test_edgeql_expressions.py | https://github.com/geldata/gel/blob/master/tests/test_edgeql_expressions.py | Apache-2.0 |
async def test_edgeql_expr_range_19(self):
# Test addition for datetime ranges.
await self.assert_query_result(
f'''
select
range(<cal::local_datetime>'2022-06-06T00:00:00',
<cal::local_datetime>'2022-06-15T00:00:00') +
range(<cal::local_datetime>'2022-06-10T00:00:00',
<cal::local_datetime>'2022-06-17T00:00:00') =
range(<cal::local_datetime>'2022-06-06T00:00:00',
<cal::local_datetime>'2022-06-17T00:00:00');
''',
[True],
)
await self.assert_query_result(
f'''
select
range(<cal::local_datetime>{{}},
<cal::local_datetime>'2022-06-15T00:00:00') +
range(<cal::local_datetime>'2022-06-10T00:00:00',
<cal::local_datetime>'2022-06-17T00:00:00') =
range(<cal::local_datetime>{{}},
<cal::local_datetime>'2022-06-17T00:00:00');
''',
[True],
)
await self.assert_query_result(
f'''
select
range(<cal::local_datetime>'2022-06-10T00:00:00') +
range(<cal::local_datetime>'2022-06-06T00:00:00',
<cal::local_datetime>'2022-06-17T00:00:00') =
range(<cal::local_datetime>'2022-06-06T00:00:00');
''',
[True],
) | ,
[True],
)
await self.assert_query_result(
f | test_edgeql_expr_range_19 | python | geldata/gel | tests/test_edgeql_expressions.py | https://github.com/geldata/gel/blob/master/tests/test_edgeql_expressions.py | Apache-2.0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.