--- splits: - name: train num_bytes: 786835439 num_examples: 10601 download_size: 0 dataset_size: 786835439 configs: - config_name: default data_files: - split: train path: kvasir-points_datasets_script-train-*.arrow --- # 🩺 MedMultiPoints: A Multimodal Dataset for Object Detection, Localization, and Counting in Medical Imaging [![Paper](https://img.shields.io/badge/Paper-arxiv-blue)](https://arxiv.org/abs/2505.16647) 📫 For queries, contact: [sushant@simula.no](mailto:sushant@simula.no) ## Dataset Summary **MedMultiPoints** is a curated, multimodal medical imaging dataset designed for **multi-task learning** in the medical domain—spanning **object detection**, **localization**, and **counting** tasks. It integrates data from **endoscopic** and **microscopic** modalities, reflecting real-world clinical diversity. The dataset is introduced in the paper: **"Point, Detect, Count: Multi-Task Medical Image Understanding with Instruction-Tuned Vision-Language Models"** Presented at **IEEE CBMS 2025, Madrid, Spain.** → [Project Page & Code](https://github.com/Simula/PointDetectCount) **Instruction-Fused JSONL Files**: - [`multi-task-train.jsonl`](https://huggingface.co/datasets/SimulaMet/MedMultiPoints/resolve/main/instruction_dataset/multi-task-train.jsonl) - [`multi-task-test.jsonl`](https://huggingface.co/datasets/SimulaMet/MedMultiPoints/resolve/main/instruction_dataset/multi-task-test.jsonl) ## Features - **10,600 images** from diverse modalities: endoscopy (HyperKvasir) and microscopy (VISEM-Tracking) - Rich **multi-type annotations**: - **Bounding Boxes** (`bbox_2d`) for object detection - **Point Annotations** (`point_2d`) for localization - **Count Labels** (`counts`) for counting tasks - Compatible with **Vision-Language Models (VLMs)** and **instruction-tuned pipelines** - JSON-formatted annotations designed for seamless integration with multimodal training ## Data Schema Each sample in the dataset contains: | Field | Type | Description | |-------------------|-----------|--------------------------------------------------| | `image` | Image | Raw medical image | | `image_sha256` | string | SHA-256 hash of the image for integrity | | `img_size` | [int, int]| Original image width and height | | `points` | list | List of `[x, y]` point annotations | | `bbox` | list | List of `[x1, y1, x2, y2]` bounding boxes | | `count` | int | Object count in the image | | `label` | string | Class label (e.g., `polyps`, `sperm`, etc.) | | `collection_method` | string | Task type: `counting`, `detection`, etc. | | `classification` | string | Description of annotation type (e.g., pathological-findings) | | `organ` | string | Target organ: `Lower GI`, `Microscopy`, etc. | ## Supported Tasks This dataset supports the following **multi-task** settings: - 🔲 **Object Detection** (bounding box prediction) - 📍 **Localization** (point prediction) - 🔢 **Counting** (object count regression) - 🧠 **Multimodal Instruction-Based Learning** ## How to Load ```python from datasets import load_dataset ds = load_dataset("SushantGautam/MedMultiPoints")['train'] sample = ds[0] # Access image and annotations image = sample['image'] bbox = sample['bbox'] points = sample['points'] count = sample['count'] ``` ## Example ```json { "image_sha256": "71179abc4b011cc99bddb3344e3e114765b32bdf77e78892f046026d785a4bdb", "img_size": [622, 529], "points": [[234, 171.5]], "bbox": [[38, 5, 430, 338]], "count": 1, "label": "polyps", "collection_method": "counting", "classification": "pathological-findings", "organ": "Lower GI" } ``` ## Citation If you use this dataset, please cite: ```bibtex @article{Gautam2025May, author = {Gautam, Sushant and Riegler, Michael A. and Halvorsen, P{\aa}l}, title = {{Point, Detect, Count: Multi-Task Medical Image Understanding with Instruction-Tuned Vision-Language Models}}, journal = {arXiv}, year = {2025}, month = may, eprint = {2505.16647}, doi = {10.48550/arXiv.2505.16647} } ```