Sin2pi commited on
Commit
faf6ecb
·
verified ·
1 Parent(s): 52a2eb8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -10
README.md CHANGED
@@ -5,6 +5,36 @@ task_categories:
5
  tags:
6
  - collator
7
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  #### Adaptive Context-Aware Noise Injection
9
 
10
  Preprocessing pipeline that includes adaptive context-aware noise injection to enhance model robustness. This method dynamically adjusts noise intensity based on the amplitude of the audio signal, ensuring realistic and effective augmentation.
@@ -22,19 +52,11 @@ Preprocessing pipeline that includes adaptive context-aware noise injection to e
22
 
23
  ```python
24
 
25
- ## HF transformers
26
 
27
  data_collator = DataCollatorSpeechSeq2SeqWithPadding(
28
  processor=processor,
29
  decoder_start_token_id=model.config.decoder_start_token_id,
30
- apply_augmentation=True, # Enable augmentation
31
- apply_noise_injection=True # Enable adaptive noise injection
32
- )
33
-
34
-
35
- ### pytorch
36
-
37
- data_collator = DataCollatorSpeechSeq2SeqWithPadding(
38
  apply_augmentation=True,
39
  apply_noise_injection=True # Enable adaptive noise injection
40
  )
@@ -42,4 +64,4 @@ data_collator = DataCollatorSpeechSeq2SeqWithPadding(
42
  dataloader = torch.utils.data.DataLoader(dataset, batch_size=2, shuffle=True, collate_fn=data_collator)
43
 
44
  for batch in dataloader:
45
- outputs = model(batch)
 
5
  tags:
6
  - collator
7
  ---
8
+
9
+ ## Dynamic Audio Data Augmentation
10
+
11
+
12
+ Key Benefits
13
+ Enhanced Robustness: By varying spectrogram parameters and injecting realistic noise, our models learn to handle a wide range of audio conditions.
14
+
15
+ Low Overhead: The augmentation is integrated into the existing pipeline, ensuring minimal additional computational cost.
16
+
17
+ On-the-Fly Spectrogram Parameter Adjustment:
18
+
19
+ n_fft and hop_length: Values for n_fft and hop_length are randomly selected from predefined ranges for each audio sample, providing varied spectrogram representations.
20
+
21
+ Log-Mel Modulation:
22
+
23
+
24
+ ### On-the-Fly Spectrogram Parameter Adjustment:
25
+
26
+ n_fft and hop_length: Values for n_fft and hop_length are randomly selected from predefined ranges for each audio sample, providing varied spectrogram representations.
27
+
28
+ ### Log-Mel Modulation:
29
+
30
+ Augmentation process integrates with the existing log-Mel spectrogram calculation. This means we modulate the parameters of the log-Mel spectrogram dynamically, ensuring no additional overhead is introduced while providing effective data augmentation.
31
+
32
+ ### Efficiency and Performance
33
+ Log-Mel Spectrogram Manipulation:
34
+
35
+ Augmentation process seamlessly integrates into the existing log-Mel spectrogram calculation, adding no extra overhead. This efficient design ensures that our preprocessing remains computationally lightweight and fast.
36
+
37
+
38
  #### Adaptive Context-Aware Noise Injection
39
 
40
  Preprocessing pipeline that includes adaptive context-aware noise injection to enhance model robustness. This method dynamically adjusts noise intensity based on the amplitude of the audio signal, ensuring realistic and effective augmentation.
 
52
 
53
  ```python
54
 
55
+ ## HF transformers or pure pytorch
56
 
57
  data_collator = DataCollatorSpeechSeq2SeqWithPadding(
58
  processor=processor,
59
  decoder_start_token_id=model.config.decoder_start_token_id,
 
 
 
 
 
 
 
 
60
  apply_augmentation=True,
61
  apply_noise_injection=True # Enable adaptive noise injection
62
  )
 
64
  dataloader = torch.utils.data.DataLoader(dataset, batch_size=2, shuffle=True, collate_fn=data_collator)
65
 
66
  for batch in dataloader:
67
+ outputs = model(batch)