Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10M - 100M
DOI:
import pickle | |
import sys | |
import pyarrow.parquet as pq | |
import torch | |
import torch.nn.functional as F | |
import faiss | |
import numpy as np | |
def main( | |
path: str, query_prefix: str, shard_num: int, retrieval_depth: int, num_dim: int, use_faiss_gpu: bool = False | |
) -> None: | |
query_filenames = [ | |
"topics.dl21.parquet", | |
"topics.msmarco-v2-doc.dev2.parquet", | |
"topics.dl22.parquet", | |
"topics.rag24.raggy-dev.parquet", | |
"topics.dl23.parquet", | |
"topics.rag24.researchy-dev.parquet", | |
"topics.msmarco-v2-doc.dev.parquet", | |
] | |
shard_filename = f"{path}{shard_num:02}.parquet" | |
print(f"Starting retrieval on Chunk {shard_num} for {shard_filename}") | |
doc_embeddings = [] | |
idx2docid = {} | |
print("Reading Document Embeddings File") | |
table = pq.read_table(shard_filename) | |
print("Parquet file read, looping") | |
print(f"Chunk {shard_filename} loaded with {len(table)} documents") | |
for idx in range(len(table)): | |
doc_id = str(table[0][idx]) | |
doc_embeddings.append(table[1][idx].as_py()[:num_dim]) | |
idx2docid[idx] = doc_id | |
doc_embeddings = torch.tensor(doc_embeddings, dtype=torch.float32) | |
print(f"Embeddings loaded. Size {doc_embeddings.shape}") | |
doc_embeddings = F.normalize(doc_embeddings, p=2, dim=1) | |
print("Document Embeddings normalized") | |
print("Document Embeddings Loaded into index") | |
if use_faiss_gpu: | |
# Create a FAISS index on GPU | |
index = faiss.IndexFlatL2(num_dim) | |
index = faiss.index_cpu_to_gpu(faiss.StandardGpuResources(), 0, index) | |
index.add(doc_embeddings.numpy()) | |
else: | |
# Use numpy for similarity calculations | |
doc_embeddings_numpy = doc_embeddings.numpy() | |
for query_filename in query_filenames: | |
query_embeddings = [] | |
retrieved_results = {} | |
idx2query_id = {} | |
query_filename_full = f"{path}{query_prefix}{query_filename}" | |
print(f"Retrieving from {shard_filename} for query set {query_filename_full}") | |
query_embeddings = [] | |
print("Loading Query Embedding file") | |
table = pq.read_table(query_filename_full) | |
print("Done loading parquet query file") | |
for idx in range(len(table)): | |
query_id = str(table[0][idx]) | |
query_embeddings.append(table[2][idx].as_py()[:num_dim]) | |
idx2query_id[idx] = query_id | |
query_embeddings = torch.tensor(query_embeddings, dtype=torch.float32) | |
query_embeddings = F.normalize(query_embeddings, p=2, dim=1) | |
print(f"Query Embeddings loaded with size {query_embeddings.shape}") | |
if use_faiss_gpu: | |
# Search the FAISS index on GPU | |
similarities, indices = index.search(query_embeddings.numpy(), retrieval_depth) | |
for idx in range(query_embeddings.shape[0]): | |
qid = idx2query_id[idx] | |
retrieved_results[qid] = {} | |
for jdx in range(retrieval_depth): | |
idx_doc = int(indices[idx, jdx]) | |
doc_id = idx2docid[idx_doc] | |
retrieved_results[qid][doc_id] = float(similarities[idx, jdx]) | |
else: | |
# Use numpy for similarity calculations | |
for idx in range(query_embeddings.shape[0]): | |
similarities = np.dot(query_embeddings[idx].numpy(), doc_embeddings_numpy.T) | |
top_n = np.argsort(-similarities)[:retrieval_depth] | |
qid = idx2query_id[idx] | |
retrieved_results[qid] = {} | |
for jdx in range(retrieval_depth): | |
idx_doc = int(top_n[jdx]) | |
doc_id = idx2docid[idx_doc] | |
retrieved_results[qid][doc_id] = float(similarities[idx_doc]) | |
with open(f"{shard_num}-{query_prefix}{num_dim}-{query_filename}", "wb") as w: | |
pickle.dump(retrieved_results, w) | |
if __name__ == "__main__": | |
path = sys.argv[1] | |
query_prefix = sys.argv[2] | |
shard_num = int(sys.argv[3]) | |
retrieval_depth = int(sys.argv[4]) | |
num_dim = int(sys.argv[5]) | |
use_faiss_gpu = bool(int(sys.argv[6])) # 0 for numpy, 1 for FAISS GPU | |
main(path, query_prefix, shard_num, retrieval_depth, num_dim, use_faiss_gpu) |