Datasets:
taisazero
commited on
Commit
·
8c09aff
1
Parent(s):
39f0207
updated names again
Browse files- shellcode_i_a32.py +219 -0
shellcode_i_a32.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""TODO: Add a description here."""
|
16 |
+
|
17 |
+
|
18 |
+
import csv
|
19 |
+
import json
|
20 |
+
import os
|
21 |
+
import pandas as pd
|
22 |
+
import datasets
|
23 |
+
|
24 |
+
|
25 |
+
# TODO: Add BibTeX citation
|
26 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
27 |
+
_CITATION = """\
|
28 |
+
@inproceedings{liguori-etal-2021-shellcode,
|
29 |
+
title = "{S}hellcode{\_}{IA}32: A Dataset for Automatic Shellcode Generation",
|
30 |
+
author = "Liguori, Pietro and
|
31 |
+
Al-Hossami, Erfan and
|
32 |
+
Cotroneo, Domenico and
|
33 |
+
Natella, Roberto and
|
34 |
+
Cukic, Bojan and
|
35 |
+
Shaikh, Samira",
|
36 |
+
booktitle = "Proceedings of the 1st Workshop on Natural Language Processing for Programming (NLP4Prog 2021)",
|
37 |
+
month = aug,
|
38 |
+
year = "2021",
|
39 |
+
address = "Online",
|
40 |
+
publisher = "Association for Computational Linguistics",
|
41 |
+
url = "https://aclanthology.org/2021.nlp4prog-1.7",
|
42 |
+
doi = "10.18653/v1/2021.nlp4prog-1.7",
|
43 |
+
pages = "58--64",
|
44 |
+
abstract = "We take the first step to address the task of automatically generating shellcodes, i.e., small pieces of code used as a payload in the exploitation of a software vulnerability, starting from natural language comments. We assemble and release a novel dataset (Shellcode{\_}IA32), consisting of challenging but common assembly instructions with their natural language descriptions. We experiment with standard methods in neural machine translation (NMT) to establish baseline performance levels on this task.",
|
45 |
+
}
|
46 |
+
"""
|
47 |
+
|
48 |
+
# TODO: Add description of the dataset here
|
49 |
+
# You can copy an official description
|
50 |
+
_DESCRIPTION = """\
|
51 |
+
Shellcode_IA32 is a dataset for shellcode generation from English intents. The shellcodes are compilable on Intel Architecture 32-bits.
|
52 |
+
"""
|
53 |
+
|
54 |
+
# TODO: Add a link to an official homepage for the dataset here
|
55 |
+
_HOMEPAGE = "https://github.com/dessertlab/Shellcode_IA32"
|
56 |
+
|
57 |
+
# TODO: Add the licence for the dataset here if you can find it
|
58 |
+
_LICENSE = "GNU GENERAL PUBLIC LICENSE"
|
59 |
+
|
60 |
+
# TODO: Add link to the official dataset URLs here
|
61 |
+
# The HuggingFace dataset library don't host the datasets but only point to the original files
|
62 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
63 |
+
_URLs = {
|
64 |
+
'default': "https://raw.githubusercontent.com/dessertlab/Shellcode_IA32/main/Shellcode_IA32.tsv",
|
65 |
+
}
|
66 |
+
|
67 |
+
|
68 |
+
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
|
69 |
+
class ShellcodeIA32(datasets.GeneratorBasedBuilder):
|
70 |
+
"""Shellcode_IA32 a dataset for shellcode generation"""
|
71 |
+
|
72 |
+
VERSION = datasets.Version("1.1.0")
|
73 |
+
|
74 |
+
# This is an example of a dataset with multiple configurations.
|
75 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
76 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
77 |
+
|
78 |
+
# If you need to make complex sub-parts in the datasets with configurable options
|
79 |
+
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
80 |
+
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
81 |
+
|
82 |
+
# You will be able to load one or the other configurations in the following list with
|
83 |
+
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
84 |
+
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
85 |
+
# BUILDER_CONFIGS = [
|
86 |
+
# datasets.BuilderConfig(name="default", version=VERSION, description="This part of my dataset covers the default train/test split"),
|
87 |
+
# #datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"),
|
88 |
+
# ]
|
89 |
+
|
90 |
+
DEFAULT_CONFIG_NAME = "default" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
91 |
+
|
92 |
+
def _info(self):
|
93 |
+
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
94 |
+
|
95 |
+
features = datasets.Features(
|
96 |
+
{
|
97 |
+
"intent": datasets.Value("string"),
|
98 |
+
"snippet": datasets.Value("string"),
|
99 |
+
|
100 |
+
}
|
101 |
+
)
|
102 |
+
return datasets.DatasetInfo(
|
103 |
+
# This is the description that will appear on the datasets page.
|
104 |
+
description=_DESCRIPTION,
|
105 |
+
# This defines the different columns of the dataset and their types
|
106 |
+
features=features, # Here we define them above because they are different between the two configurations
|
107 |
+
# If there's a common (input, target) tuple from the features,
|
108 |
+
# specify them here. They'll be used if as_supervised=True in
|
109 |
+
# builder.as_dataset.
|
110 |
+
supervised_keys=None,
|
111 |
+
# Homepage of the dataset for documentation
|
112 |
+
homepage=_HOMEPAGE,
|
113 |
+
# License for the dataset if available
|
114 |
+
license=_LICENSE,
|
115 |
+
# Citation for the dataset
|
116 |
+
citation=_CITATION,
|
117 |
+
)
|
118 |
+
|
119 |
+
def _split_generators(self, dl_manager):
|
120 |
+
"""Returns SplitGenerators."""
|
121 |
+
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
122 |
+
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
123 |
+
|
124 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
|
125 |
+
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
126 |
+
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
127 |
+
my_urls = _URLs[self.config.name]
|
128 |
+
data_dir = dl_manager.download_and_extract(my_urls)
|
129 |
+
# return [
|
130 |
+
# datasets.SplitGenerator(
|
131 |
+
# name=datasets.Split.TRAIN,
|
132 |
+
# # These kwargs will be passed to _generate_examples
|
133 |
+
# gen_kwargs={
|
134 |
+
# "filepath": os.path.join(data_dir, "Shellcode_IA32.tsv"),
|
135 |
+
# "split": "train",
|
136 |
+
# },
|
137 |
+
# ),
|
138 |
+
# datasets.SplitGenerator(
|
139 |
+
# name=datasets.Split.TEST,
|
140 |
+
# # These kwargs will be passed to _generate_examples
|
141 |
+
# gen_kwargs={
|
142 |
+
# "filepath": os.path.join(data_dir, "Shellcode_IA32.tsv"),
|
143 |
+
# "split": "test"
|
144 |
+
# },
|
145 |
+
# ),
|
146 |
+
# datasets.SplitGenerator(
|
147 |
+
# name=datasets.Split.VALIDATION,
|
148 |
+
# # These kwargs will be passed to _generate_examples
|
149 |
+
# gen_kwargs={
|
150 |
+
# "filepath": os.path.join(data_dir, "Shellcode_IA32.tsv"),
|
151 |
+
# "split": "dev",
|
152 |
+
# },
|
153 |
+
# ),
|
154 |
+
# ]
|
155 |
+
|
156 |
+
return [
|
157 |
+
datasets.SplitGenerator(
|
158 |
+
name=datasets.Split.TRAIN,
|
159 |
+
# These kwargs will be passed to _generate_examples
|
160 |
+
gen_kwargs={
|
161 |
+
"filepath": os.path.join(data_dir),
|
162 |
+
"split": "train",
|
163 |
+
},
|
164 |
+
),
|
165 |
+
datasets.SplitGenerator(
|
166 |
+
name=datasets.Split.TEST,
|
167 |
+
# These kwargs will be passed to _generate_examples
|
168 |
+
gen_kwargs={
|
169 |
+
"filepath": os.path.join(data_dir),
|
170 |
+
"split": "test"
|
171 |
+
},
|
172 |
+
),
|
173 |
+
datasets.SplitGenerator(
|
174 |
+
name=datasets.Split.VALIDATION,
|
175 |
+
# These kwargs will be passed to _generate_examples
|
176 |
+
gen_kwargs={
|
177 |
+
"filepath": os.path.join(data_dir),
|
178 |
+
"split": "dev",
|
179 |
+
},
|
180 |
+
),
|
181 |
+
]
|
182 |
+
|
183 |
+
def _generate_examples(
|
184 |
+
self, filepath, split # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
185 |
+
):
|
186 |
+
""" Yields examples as (key, example) tuples. """
|
187 |
+
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
188 |
+
# The `key` is here for legacy reason (tfds) and is not important in itself.
|
189 |
+
"""This function returns the examples in the raw (text) form."""
|
190 |
+
|
191 |
+
df = pd.read_csv(filepath, delimiter = '\t')
|
192 |
+
train = df.sample(frac = 0.8, random_state = 0)
|
193 |
+
test = df.drop(train.index)
|
194 |
+
dev = test.sample(frac = 0.5, random_state = 0)
|
195 |
+
test = test.drop(dev.index)
|
196 |
+
|
197 |
+
if split == 'train':
|
198 |
+
data = train
|
199 |
+
elif split == 'dev':
|
200 |
+
data = dev
|
201 |
+
elif split == 'test':
|
202 |
+
data = test
|
203 |
+
|
204 |
+
for idx, row in data.iterrows():
|
205 |
+
yield idx, {
|
206 |
+
"snippet": row["SNIPPETS"],
|
207 |
+
"intent": row["INTENTS"],
|
208 |
+
|
209 |
+
}
|
210 |
+
# with open(filepath, encoding="utf-8") as f:
|
211 |
+
# reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
212 |
+
# reader =
|
213 |
+
# for idx, row in enumerate(reader):
|
214 |
+
#
|
215 |
+
# yield idx, {
|
216 |
+
# "snippet": row["SNIPPETS"],
|
217 |
+
# "intent": row["INTENTS"],
|
218 |
+
#
|
219 |
+
# }
|