SonishMaharjan commited on
Commit
21357eb
·
1 Parent(s): a5a5d01

Upload 4 files

Browse files
Files changed (4) hide show
  1. count_n_shards.py +22 -0
  2. languages.py +1 -0
  3. male-female.py +205 -0
  4. n_shards.json +6 -0
count_n_shards.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+ import json
3
+
4
+
5
+ splits = ["train","test"]
6
+
7
+ if __name__ == "__main__":
8
+ n_files = {}
9
+ lang_dirs = [d for d in Path("audio").iterdir() if d.is_dir()]
10
+ for lang_dir in lang_dirs:
11
+ lang = lang_dir.name
12
+ n_files[lang] = {}
13
+ for split in splits:
14
+ split_dir = lang_dir / split
15
+ if split_dir.exists():
16
+ n_files_per_split = len(list(split_dir.glob("*.tar")))
17
+ else:
18
+ n_files_per_split = 0
19
+ n_files[lang][split] = n_files_per_split
20
+
21
+ with open("n_shards.json", "w") as f:
22
+ json.dump(dict(sorted(n_files.items(), key=lambda x: x[0])), f, ensure_ascii=False, indent=4)
languages.py ADDED
@@ -0,0 +1 @@
 
 
1
+ LANGUAGES = {'ne-NP': 'Nepali'}
male-female.py ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Common Voice Dataset"""
16
+
17
+
18
+ import csv
19
+ import os
20
+ import json
21
+
22
+ import datasets
23
+ from datasets.utils.py_utils import size_str
24
+ from tqdm import tqdm
25
+
26
+ from .languages import LANGUAGES
27
+ from .release_stats import STATS
28
+
29
+
30
+ _CITATION = """
31
+ @inproceedings{commonvoice:2020,
32
+ author = {Ardila, R. and Branson, M. and Davis, K. and Henretty, M. and Kohler, M. and Meyer, J. and Morais, R. and Saunders, L. and Tyers, F. M. and Weber, G.},
33
+ title = {Common Voice: A Massively-Multilingual Speech Corpus},
34
+ booktitle = {Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020)},
35
+ pages = {4211--4215},
36
+ year = 2020
37
+ }
38
+ """
39
+
40
+ # _HOMEPAGE = "https://commonvoice.mozilla.org/en/datasets"
41
+
42
+ # _LICENSE = "https://creativecommons.org/publicdomain/zero/1.0/"
43
+
44
+ # TODO: change "streaming" to "main" after merge!
45
+ _BASE_URL = "https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/resolve/main/"
46
+
47
+ _AUDIO_URL = _BASE_URL + "audio/{lang}/{split}/{lang}_{split}_{shard_idx}.tar"
48
+
49
+ _TRANSCRIPT_URL = _BASE_URL + "transcript/{lang}/{split}.tsv"
50
+
51
+ _N_SHARDS_URL = _BASE_URL + "n_shards.json"
52
+
53
+
54
+ class CommonVoiceConfig(datasets.BuilderConfig):
55
+ """BuilderConfig for CommonVoice."""
56
+
57
+ def __init__(self, name, version, **kwargs):
58
+ self.language = kwargs.pop("language", None)
59
+ self.release_date = kwargs.pop("release_date", None)
60
+ self.num_clips = kwargs.pop("num_clips", None)
61
+ self.num_speakers = kwargs.pop("num_speakers", None)
62
+ self.validated_hr = kwargs.pop("validated_hr", None)
63
+ self.total_hr = kwargs.pop("total_hr", None)
64
+ self.size_bytes = kwargs.pop("size_bytes", None)
65
+ self.size_human = size_str(self.size_bytes)
66
+ description = (
67
+ f"Common Voice speech to text dataset in {self.language} released on {self.release_date}. "
68
+ f"The dataset comprises {self.validated_hr} hours of validated transcribed speech data "
69
+ f"out of {self.total_hr} hours in total from {self.num_speakers} speakers. "
70
+ f"The dataset contains {self.num_clips} audio clips and has a size of {self.size_human}."
71
+ )
72
+ super(CommonVoiceConfig, self).__init__(
73
+ name=name,
74
+ version=datasets.Version(version),
75
+ description=description,
76
+ **kwargs,
77
+ )
78
+
79
+
80
+ class CommonVoice(datasets.GeneratorBasedBuilder):
81
+ DEFAULT_WRITER_BATCH_SIZE = 1000
82
+
83
+ BUILDER_CONFIGS = [from datasets import load_dataset, DatasetDict
84
+
85
+ common_voice = DatasetDict()
86
+
87
+ common_voice["train"] = load_dataset("../dataset", "ne-NP", split="train")
88
+ common_voice["test"] = load_dataset("../dataset", "ne-NP", split="test")
89
+
90
+ print(common_voice)
91
+
92
+ CommonVoiceConfig(
93
+ name=lang,
94
+ version=0.01
95
+ )
96
+ for lang, lang_stats in STATS["locales"].items()
97
+ ]
98
+
99
+ def _info(self):
100
+ total_languages = len(STATS["locales"])
101
+ total_valid_hours = STATS["totalValidHrs"]
102
+ description = (
103
+ "Common Voice is Mozilla's initiative to help teach machines how real people speak. "
104
+ f"The dataset currently consists of {total_valid_hours} validated hours of speech "
105
+ f" in {total_languages} languages, but more voices and languages are always added."
106
+ )from datasets import load_dataset, DatasetDict
107
+
108
+ common_voice = DatasetDict()
109
+
110
+ common_voice["train"] = load_dataset("../dataset", "ne-NP", split="train")
111
+ common_voice["test"] = load_dataset("../dataset", "ne-NP", split="test")
112
+
113
+ print(common_voice)
114
+
115
+ features = datasets.Features(
116
+ {
117
+
118
+ "audio_id": datasets.Value("string"),from datasets import load_dataset, DatasetDict
119
+
120
+ common_voice = DatasetDict()
121
+
122
+ common_voice["train"] = load_dataset("../dataset", "ne-NP", split="train")
123
+ common_voice["test"] = load_dataset("../dataset", "ne-NP", split="test")
124
+
125
+ print(common_voice)
126
+
127
+ "audio": datasets.features.Audio(sampling_rate=48_000),
128
+ "sentence": datasets.Value("string"),
129
+
130
+ }
131
+ )
132
+
133
+ return datasets.DatasetInfo(
134
+ description=description,
135
+ features=features,
136
+ supervised_keys=None,
137
+ citation=_CITATION,
138
+ version=self.config.version,
139
+ )
140
+
141
+ def _split_generators(self, dl_manager):
142
+ lang = self.config.name
143
+ n_shards_path = dl_manager.download_and_extract(_N_SHARDS_URL)
144
+ with open(n_shards_path, encoding="utf-8") as f:
145
+ n_shards = json.load(f)
146
+
147
+ audio_urls = {}
148
+ splits = ("train", "test")
149
+ for split in splits:
150
+ audio_urls[split] = [
151
+ _AUDIO_URL.format(lang=lang, split=split, shard_idx=i) for i in range(n_shards[lang][split])
152
+ ]
153
+ archive_paths = dl_manager.download(audio_urls)
154
+ local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {}
155
+
156
+ meta_urls = {split: _TRANSCRIPT_URL.format(lang=lang, split=split) for split in splits}
157
+ meta_paths = dl_manager.download_and_extract(meta_urls)
158
+
159
+ split_generators = []
160
+ split_names = {
161
+ "train": datasets.Split.TRAIN,
162
+ "test": datasets.Split.TEST,
163
+ }
164
+ for split in splits:
165
+ split_generators.append(
166
+ datasets.SplitGenerator(
167
+ name=split_names.get(split, split),
168
+ gen_kwargs={
169
+ "local_extracted_archive_paths": local_extracted_archive_paths.get(split),
170
+ "archives": [dl_manager.iter_archive(path) for path in archive_paths.get(split)],
171
+ "meta_path": meta_paths[split],
172
+ },
173
+ ),
174
+ )
175
+
176
+ return split_generators
177
+
178
+ def _generate_examples(self, local_extracted_archive_paths, archives, meta_path):
179
+ data_fields = list(self._info().features.keys())
180
+ metadata = {}
181
+ with open(meta_path, encoding="utf-8") as f:
182
+ reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
183
+ for row in tqdm(reader, desc="Reading metadata..."):
184
+ if not row["path"].endswith(".wav"):
185
+ row["path"] += ".wav"
186
+ # accent -> accents in CV 8.0
187
+ if "accents" in row:
188
+ row["accent"] = row["accents"]
189
+ del row["accents"]
190
+ # if data is incomplete, fill with empty values
191
+ for field in data_fields:
192
+ if field not in row:
193
+ row[field] = ""
194
+ metadata[row["path"]] = row
195
+
196
+ for i, audio_archive in enumerate(archives):
197
+ for path, file in audio_archive:
198
+ _, filename = os.path.split(path)
199
+ if filename in metadata:
200
+ result = dict(metadata[filename])
201
+ # set the audio feature and the path to the extracted file
202
+ path = os.path.join(local_extracted_archive_paths[i], path) if local_extracted_archive_paths else path
203
+ result["audio"] = {"path": path, "bytes": file.read()}
204
+ result["path"] = path
205
+ yield path, result
n_shards.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "ne-NP": {
3
+ "train": 1,
4
+ "test": 1
5
+ }
6
+ }