Truong Lac
commited on
Commit
·
eecd666
1
Parent(s):
dc5bdbd
Preprocessed reddit dataset
Browse files- dataset_dict.json +1 -0
- test/dataset.arrow +3 -0
- test/dataset_info.json +48 -0
- test/state.json +14 -0
- train/dataset.arrow +3 -0
- train/dataset_info.json +48 -0
- train/state.json +14 -0
- valid/dataset.arrow +3 -0
- valid/dataset_info.json +48 -0
- valid/state.json +14 -0
dataset_dict.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"splits": ["train", "test", "valid"]}
|
test/dataset.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f873bf39c1e3071d027e9ed9994ccc64cd44ad745a45e301eae8b8ccae1982bc
|
3 |
+
size 53269856
|
test/dataset_info.json
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"builder_name": "reddit",
|
3 |
+
"citation": "\n@inproceedings{volske-etal-2017-tl,\n title = {TL;DR: Mining {R}eddit to Learn Automatic Summarization},\n author = {V{\"o}lske, Michael and Potthast, Martin and Syed, Shahbaz and Stein, Benno},\n booktitle = {Proceedings of the Workshop on New Frontiers in Summarization},\n month = {sep},\n year = {2017},\n address = {Copenhagen, Denmark},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W17-4508},\n doi = {10.18653/v1/W17-4508},\n pages = {59--63},\n abstract = {Recent advances in automatic text summarization have used deep neural networks to generate high-quality abstractive summaries, but the performance of these models strongly depends on large amounts of suitable training data. We propose a new method for mining social media for author-provided summaries, taking advantage of the common practice of appending a {``}TL;DR{''} to long posts. A case study using a large Reddit crawl yields the Webis-TLDR-17 dataset, complementing existing corpora primarily from the news genre. Our technique is likely applicable to other social media sites and general web crawls.},\n}\n",
|
4 |
+
"config_name": "default",
|
5 |
+
"dataset_size": 18936213573,
|
6 |
+
"description": "\nThis corpus contains preprocessed posts from the Reddit dataset.\nThe dataset consists of 3,848,330 posts with an average length of 270 words for content,\nand 28 words for the summary.\n\nFeatures includes strings: author, body, normalizedBody, content, summary, subreddit, subreddit_id.\nContent is used as document and summary is used as summary.\n",
|
7 |
+
"download_checksums": {
|
8 |
+
"https://zenodo.org/record/1043504/files/corpus-webis-tldr-17.zip?download=1": {
|
9 |
+
"num_bytes": 3141854161,
|
10 |
+
"checksum": "c1a0f8c4374c7314d3c9ec50dd505303c536062d87037d4dca7035b89b36938a"
|
11 |
+
}
|
12 |
+
},
|
13 |
+
"download_size": 3141854161,
|
14 |
+
"features": {
|
15 |
+
"content": {
|
16 |
+
"dtype": "string",
|
17 |
+
"id": null,
|
18 |
+
"_type": "Value"
|
19 |
+
},
|
20 |
+
"summary": {
|
21 |
+
"dtype": "string",
|
22 |
+
"id": null,
|
23 |
+
"_type": "Value"
|
24 |
+
}
|
25 |
+
},
|
26 |
+
"homepage": "https://github.com/webis-de/webis-tldr-17-corpus",
|
27 |
+
"license": "",
|
28 |
+
"post_processed": null,
|
29 |
+
"post_processing_size": null,
|
30 |
+
"size_in_bytes": 22078067734,
|
31 |
+
"splits": {
|
32 |
+
"train": {
|
33 |
+
"name": "train",
|
34 |
+
"num_bytes": 18936213573,
|
35 |
+
"num_examples": 3848330,
|
36 |
+
"dataset_name": "reddit"
|
37 |
+
}
|
38 |
+
},
|
39 |
+
"supervised_keys": null,
|
40 |
+
"task_templates": null,
|
41 |
+
"version": {
|
42 |
+
"version_str": "1.0.0",
|
43 |
+
"description": null,
|
44 |
+
"major": 1,
|
45 |
+
"minor": 0,
|
46 |
+
"patch": 0
|
47 |
+
}
|
48 |
+
}
|
test/state.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_data_files": [
|
3 |
+
{
|
4 |
+
"filename": "dataset.arrow"
|
5 |
+
}
|
6 |
+
],
|
7 |
+
"_fingerprint": "07c62ea796c293b6",
|
8 |
+
"_format_columns": null,
|
9 |
+
"_format_kwargs": {},
|
10 |
+
"_format_type": null,
|
11 |
+
"_indexes": {},
|
12 |
+
"_output_all_columns": false,
|
13 |
+
"_split": "train"
|
14 |
+
}
|
train/dataset.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:994f812da4d64433e35ed025780299accc0a8d1940b84a2c0072e5a61ecb072c
|
3 |
+
size 247748200
|
train/dataset_info.json
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"builder_name": "reddit",
|
3 |
+
"citation": "\n@inproceedings{volske-etal-2017-tl,\n title = {TL;DR: Mining {R}eddit to Learn Automatic Summarization},\n author = {V{\"o}lske, Michael and Potthast, Martin and Syed, Shahbaz and Stein, Benno},\n booktitle = {Proceedings of the Workshop on New Frontiers in Summarization},\n month = {sep},\n year = {2017},\n address = {Copenhagen, Denmark},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W17-4508},\n doi = {10.18653/v1/W17-4508},\n pages = {59--63},\n abstract = {Recent advances in automatic text summarization have used deep neural networks to generate high-quality abstractive summaries, but the performance of these models strongly depends on large amounts of suitable training data. We propose a new method for mining social media for author-provided summaries, taking advantage of the common practice of appending a {``}TL;DR{''} to long posts. A case study using a large Reddit crawl yields the Webis-TLDR-17 dataset, complementing existing corpora primarily from the news genre. Our technique is likely applicable to other social media sites and general web crawls.},\n}\n",
|
4 |
+
"config_name": "default",
|
5 |
+
"dataset_size": 18936213573,
|
6 |
+
"description": "\nThis corpus contains preprocessed posts from the Reddit dataset.\nThe dataset consists of 3,848,330 posts with an average length of 270 words for content,\nand 28 words for the summary.\n\nFeatures includes strings: author, body, normalizedBody, content, summary, subreddit, subreddit_id.\nContent is used as document and summary is used as summary.\n",
|
7 |
+
"download_checksums": {
|
8 |
+
"https://zenodo.org/record/1043504/files/corpus-webis-tldr-17.zip?download=1": {
|
9 |
+
"num_bytes": 3141854161,
|
10 |
+
"checksum": "c1a0f8c4374c7314d3c9ec50dd505303c536062d87037d4dca7035b89b36938a"
|
11 |
+
}
|
12 |
+
},
|
13 |
+
"download_size": 3141854161,
|
14 |
+
"features": {
|
15 |
+
"content": {
|
16 |
+
"dtype": "string",
|
17 |
+
"id": null,
|
18 |
+
"_type": "Value"
|
19 |
+
},
|
20 |
+
"summary": {
|
21 |
+
"dtype": "string",
|
22 |
+
"id": null,
|
23 |
+
"_type": "Value"
|
24 |
+
}
|
25 |
+
},
|
26 |
+
"homepage": "https://github.com/webis-de/webis-tldr-17-corpus",
|
27 |
+
"license": "",
|
28 |
+
"post_processed": null,
|
29 |
+
"post_processing_size": null,
|
30 |
+
"size_in_bytes": 22078067734,
|
31 |
+
"splits": {
|
32 |
+
"train": {
|
33 |
+
"name": "train",
|
34 |
+
"num_bytes": 18936213573,
|
35 |
+
"num_examples": 3848330,
|
36 |
+
"dataset_name": "reddit"
|
37 |
+
}
|
38 |
+
},
|
39 |
+
"supervised_keys": null,
|
40 |
+
"task_templates": null,
|
41 |
+
"version": {
|
42 |
+
"version_str": "1.0.0",
|
43 |
+
"description": null,
|
44 |
+
"major": 1,
|
45 |
+
"minor": 0,
|
46 |
+
"patch": 0
|
47 |
+
}
|
48 |
+
}
|
train/state.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_data_files": [
|
3 |
+
{
|
4 |
+
"filename": "dataset.arrow"
|
5 |
+
}
|
6 |
+
],
|
7 |
+
"_fingerprint": "a0cac1e696966c5d",
|
8 |
+
"_format_columns": null,
|
9 |
+
"_format_kwargs": {},
|
10 |
+
"_format_type": null,
|
11 |
+
"_indexes": {},
|
12 |
+
"_output_all_columns": false,
|
13 |
+
"_split": "train"
|
14 |
+
}
|
valid/dataset.arrow
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba03a4334366693158b0e26da0e6e23a88edd4e021302a853a4211c702599937
|
3 |
+
size 53055432
|
valid/dataset_info.json
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"builder_name": "reddit",
|
3 |
+
"citation": "\n@inproceedings{volske-etal-2017-tl,\n title = {TL;DR: Mining {R}eddit to Learn Automatic Summarization},\n author = {V{\"o}lske, Michael and Potthast, Martin and Syed, Shahbaz and Stein, Benno},\n booktitle = {Proceedings of the Workshop on New Frontiers in Summarization},\n month = {sep},\n year = {2017},\n address = {Copenhagen, Denmark},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W17-4508},\n doi = {10.18653/v1/W17-4508},\n pages = {59--63},\n abstract = {Recent advances in automatic text summarization have used deep neural networks to generate high-quality abstractive summaries, but the performance of these models strongly depends on large amounts of suitable training data. We propose a new method for mining social media for author-provided summaries, taking advantage of the common practice of appending a {``}TL;DR{''} to long posts. A case study using a large Reddit crawl yields the Webis-TLDR-17 dataset, complementing existing corpora primarily from the news genre. Our technique is likely applicable to other social media sites and general web crawls.},\n}\n",
|
4 |
+
"config_name": "default",
|
5 |
+
"dataset_size": 18936213573,
|
6 |
+
"description": "\nThis corpus contains preprocessed posts from the Reddit dataset.\nThe dataset consists of 3,848,330 posts with an average length of 270 words for content,\nand 28 words for the summary.\n\nFeatures includes strings: author, body, normalizedBody, content, summary, subreddit, subreddit_id.\nContent is used as document and summary is used as summary.\n",
|
7 |
+
"download_checksums": {
|
8 |
+
"https://zenodo.org/record/1043504/files/corpus-webis-tldr-17.zip?download=1": {
|
9 |
+
"num_bytes": 3141854161,
|
10 |
+
"checksum": "c1a0f8c4374c7314d3c9ec50dd505303c536062d87037d4dca7035b89b36938a"
|
11 |
+
}
|
12 |
+
},
|
13 |
+
"download_size": 3141854161,
|
14 |
+
"features": {
|
15 |
+
"content": {
|
16 |
+
"dtype": "string",
|
17 |
+
"id": null,
|
18 |
+
"_type": "Value"
|
19 |
+
},
|
20 |
+
"summary": {
|
21 |
+
"dtype": "string",
|
22 |
+
"id": null,
|
23 |
+
"_type": "Value"
|
24 |
+
}
|
25 |
+
},
|
26 |
+
"homepage": "https://github.com/webis-de/webis-tldr-17-corpus",
|
27 |
+
"license": "",
|
28 |
+
"post_processed": null,
|
29 |
+
"post_processing_size": null,
|
30 |
+
"size_in_bytes": 22078067734,
|
31 |
+
"splits": {
|
32 |
+
"train": {
|
33 |
+
"name": "train",
|
34 |
+
"num_bytes": 18936213573,
|
35 |
+
"num_examples": 3848330,
|
36 |
+
"dataset_name": "reddit"
|
37 |
+
}
|
38 |
+
},
|
39 |
+
"supervised_keys": null,
|
40 |
+
"task_templates": null,
|
41 |
+
"version": {
|
42 |
+
"version_str": "1.0.0",
|
43 |
+
"description": null,
|
44 |
+
"major": 1,
|
45 |
+
"minor": 0,
|
46 |
+
"patch": 0
|
47 |
+
}
|
48 |
+
}
|
valid/state.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_data_files": [
|
3 |
+
{
|
4 |
+
"filename": "dataset.arrow"
|
5 |
+
}
|
6 |
+
],
|
7 |
+
"_fingerprint": "ae859c4a6589884b",
|
8 |
+
"_format_columns": null,
|
9 |
+
"_format_kwargs": {},
|
10 |
+
"_format_type": null,
|
11 |
+
"_indexes": {},
|
12 |
+
"_output_all_columns": false,
|
13 |
+
"_split": "train"
|
14 |
+
}
|