Datasets:
Delete build_dataset.py
Browse files- build_dataset.py +0 -431
build_dataset.py
DELETED
@@ -1,431 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import re
|
3 |
-
|
4 |
-
from datasets import Dataset, DatasetDict
|
5 |
-
import os
|
6 |
-
|
7 |
-
from PIL import Image
|
8 |
-
import hashlib
|
9 |
-
import shutil
|
10 |
-
|
11 |
-
import openai
|
12 |
-
|
13 |
-
|
14 |
-
VERSION = "20250515"
|
15 |
-
LANG = "zh"
|
16 |
-
OUTPUT_PATH = "/fs-computility/ai4sData/earth-shared/SFE/sfe_dataset/v0"
|
17 |
-
|
18 |
-
chemistry_dir = "/fs-computility/ai4sData/earth-shared/SFE/v0/chem"
|
19 |
-
life_dir = "/fs-computility/ai4sData/earth-shared/SFE/v0/life"
|
20 |
-
astro_dir = "/fs-computility/ai4sData/earth-shared/SFE/v0/astro"
|
21 |
-
earth_dir = "/fs-computility/ai4sData/earth-shared/SFE/v0/earth"
|
22 |
-
mat_dir = "/fs-computility/ai4sData/earth-shared/SFE/v0/mat"
|
23 |
-
|
24 |
-
VERSION = f"{VERSION}-{LANG}"
|
25 |
-
|
26 |
-
ENABLE_FILETER = False
|
27 |
-
FILTERS = ["e014"]
|
28 |
-
|
29 |
-
def enumerate_question_types(question_type):
|
30 |
-
if question_type.lower() in ["exact match"]:
|
31 |
-
return "exact_match"
|
32 |
-
elif question_type.lower() in ["multiple choice"]:
|
33 |
-
return "mcq"
|
34 |
-
elif question_type.lower() in ["open question"]:
|
35 |
-
return "open_ended"
|
36 |
-
|
37 |
-
raise ValueError(f"Unknown question type: {question_type}")
|
38 |
-
|
39 |
-
|
40 |
-
def parse_float_sequence_within(input_str):
|
41 |
-
pattern_in_bracket = r"\[(.*)\]"
|
42 |
-
match = re.search(pattern_in_bracket, input_str)
|
43 |
-
|
44 |
-
if not match:
|
45 |
-
return None
|
46 |
-
|
47 |
-
inside_str = match.group(1)
|
48 |
-
groups = inside_str.split(";")
|
49 |
-
|
50 |
-
bboxs = []
|
51 |
-
for group in groups:
|
52 |
-
floats = group.split(",")
|
53 |
-
if len(floats) != 4:
|
54 |
-
continue
|
55 |
-
try:
|
56 |
-
bboxs.append([float(f) for f in floats])
|
57 |
-
except Exception as e:
|
58 |
-
continue
|
59 |
-
|
60 |
-
if len(bboxs) == 0:
|
61 |
-
return None
|
62 |
-
|
63 |
-
return bboxs
|
64 |
-
|
65 |
-
|
66 |
-
if __name__ == "__main__":
|
67 |
-
question_ids = []
|
68 |
-
question_texts = []
|
69 |
-
question_options = []
|
70 |
-
question_images = []
|
71 |
-
question_answers = []
|
72 |
-
question_types = []
|
73 |
-
question_fields = []
|
74 |
-
|
75 |
-
# load astro data
|
76 |
-
for folder_name in os.listdir(astro_dir):
|
77 |
-
if not folder_name.startswith("A"):
|
78 |
-
continue
|
79 |
-
|
80 |
-
if ENABLE_FILETER and not folder_name.lower() in FILTERS:
|
81 |
-
continue
|
82 |
-
|
83 |
-
folder_path = os.path.join(astro_dir, folder_name)
|
84 |
-
if not os.path.isdir(folder_path):
|
85 |
-
continue
|
86 |
-
|
87 |
-
file_processed = False
|
88 |
-
for file_name in os.listdir(folder_path):
|
89 |
-
if not file_name.endswith(".jsonl"):
|
90 |
-
continue
|
91 |
-
if not file_name.startswith(LANG):
|
92 |
-
continue
|
93 |
-
file_processed = True
|
94 |
-
file_path = os.path.join(folder_path, file_name)
|
95 |
-
print(file_path)
|
96 |
-
with open(file_path, "r") as f:
|
97 |
-
for line in f:
|
98 |
-
data = json.loads(line)
|
99 |
-
data = {k.lower(): v for k, v in data.items()}
|
100 |
-
|
101 |
-
images = data["images"]
|
102 |
-
assert len(images) != 0
|
103 |
-
|
104 |
-
abs_images = []
|
105 |
-
for image in images:
|
106 |
-
image_path = os.path.join(astro_dir, image)
|
107 |
-
assert os.path.exists(image_path), f"Image not found: {image_path}"
|
108 |
-
md5hash = hashlib.md5(Image.open(image_path).tobytes()).hexdigest()
|
109 |
-
new_image_path = os.path.join(OUTPUT_PATH, "images", f"{image.split('.')[0].replace('/', '_')}_{md5hash}.{image.split('.')[1]}")
|
110 |
-
if not os.path.exists(new_image_path):
|
111 |
-
shutil.copy(image_path, new_image_path)
|
112 |
-
# abs_images.append(new_image_path)
|
113 |
-
abs_images.append(f"{image.split('.')[0].replace('/', '_')}_{md5hash}.{image.split('.')[1]}")
|
114 |
-
|
115 |
-
question_text = data["text"]
|
116 |
-
missing_images = len(images) - question_text.count("<image>") - sum([option.count("<image>") for option in data["answer choices"]])
|
117 |
-
question_text = " ".join(["<image>" for _ in range(missing_images)]) + " " + question_text
|
118 |
-
question_text = question_text.strip()
|
119 |
-
assert len(images) == question_text.count("<image>") + sum([option.count("<image>") for option in data["answer choices"]])
|
120 |
-
|
121 |
-
question_options_ = data["answer choices"]
|
122 |
-
question_type = enumerate_question_types(data["question type"])
|
123 |
-
question_answer = str(data["ground truth"])
|
124 |
-
|
125 |
-
question_ids.append(data["question_id"])
|
126 |
-
question_texts.append(question_text)
|
127 |
-
question_options.append(question_options_)
|
128 |
-
question_images.append(abs_images)
|
129 |
-
question_answers.append(question_answer)
|
130 |
-
question_types.append(question_type)
|
131 |
-
question_fields.append("astronomy")
|
132 |
-
if not file_processed:
|
133 |
-
print(folder_path)
|
134 |
-
raise
|
135 |
-
print("astro data loaded")
|
136 |
-
|
137 |
-
# load chem data
|
138 |
-
for folder_name in os.listdir(chemistry_dir):
|
139 |
-
if not folder_name.startswith("C"):
|
140 |
-
continue
|
141 |
-
|
142 |
-
if ENABLE_FILETER and not folder_name.lower() in FILTERS:
|
143 |
-
continue
|
144 |
-
|
145 |
-
folder_path = os.path.join(chemistry_dir, folder_name)
|
146 |
-
if not os.path.isdir(folder_path):
|
147 |
-
continue
|
148 |
-
|
149 |
-
file_processed = False
|
150 |
-
for file_name in os.listdir(folder_path):
|
151 |
-
if not file_name.endswith(".jsonl"):
|
152 |
-
continue
|
153 |
-
if not file_name.startswith(LANG):
|
154 |
-
continue
|
155 |
-
file_processed = True
|
156 |
-
file_path = os.path.join(folder_path, file_name)
|
157 |
-
print(file_path)
|
158 |
-
with open(file_path, "r") as f:
|
159 |
-
for line in f:
|
160 |
-
data = json.loads(line)
|
161 |
-
data = {k.lower(): v for k, v in data.items()}
|
162 |
-
|
163 |
-
images = data["images"]
|
164 |
-
assert len(images) != 0
|
165 |
-
|
166 |
-
abs_images = []
|
167 |
-
for image in images:
|
168 |
-
image_path = os.path.join(chemistry_dir, image)
|
169 |
-
if not os.path.exists(image_path):
|
170 |
-
image_path = os.path.join(folder_path, image)
|
171 |
-
assert os.path.exists(image_path), f"Image not found: {image_path}"
|
172 |
-
md5hash = hashlib.md5(Image.open(image_path).tobytes()).hexdigest()
|
173 |
-
new_image_path = os.path.join(OUTPUT_PATH, "images", f"{image.split('.')[0].replace('/', '_')}_{md5hash}.{image.split('.')[1]}")
|
174 |
-
if not os.path.exists(new_image_path):
|
175 |
-
shutil.copy(image_path, new_image_path)
|
176 |
-
abs_images.append(new_image_path)
|
177 |
-
|
178 |
-
question_text = data["text"]
|
179 |
-
missing_images = len(images) - question_text.count("<image>") - sum([option.count("<image>") for option in data["answer choices"]])
|
180 |
-
question_text = " ".join(["<image>" for _ in range(missing_images)]) + " " + question_text
|
181 |
-
question_text = question_text.strip()
|
182 |
-
assert len(images) == question_text.count("<image>") + sum([option.count("<image>") for option in data["answer choices"]])
|
183 |
-
|
184 |
-
question_options_ = data["answer choices"]
|
185 |
-
question_type = enumerate_question_types(data["question type"])
|
186 |
-
question_answer = str(data["ground truth"])
|
187 |
-
|
188 |
-
question_ids.append(data["question_id"])
|
189 |
-
question_texts.append(question_text)
|
190 |
-
question_options.append(question_options_)
|
191 |
-
question_images.append(abs_images)
|
192 |
-
question_answers.append(question_answer)
|
193 |
-
question_types.append(question_type)
|
194 |
-
question_fields.append("chemistry")
|
195 |
-
if not file_processed:
|
196 |
-
print(folder_path)
|
197 |
-
raise
|
198 |
-
print("chem data loaded")
|
199 |
-
|
200 |
-
# load earth data
|
201 |
-
for folder_name in os.listdir(earth_dir):
|
202 |
-
if not folder_name.startswith("E"):
|
203 |
-
continue
|
204 |
-
|
205 |
-
if ENABLE_FILETER and not folder_name.lower() in FILTERS:
|
206 |
-
continue
|
207 |
-
|
208 |
-
folder_path = os.path.join(earth_dir, folder_name)
|
209 |
-
if not os.path.isdir(folder_path):
|
210 |
-
continue
|
211 |
-
|
212 |
-
file_processed = False
|
213 |
-
for file_name in os.listdir(folder_path):
|
214 |
-
if not file_name.endswith(".jsonl"):
|
215 |
-
continue
|
216 |
-
if not file_name.startswith(LANG):
|
217 |
-
continue
|
218 |
-
file_processed = True
|
219 |
-
file_path = os.path.join(folder_path, file_name)
|
220 |
-
print(file_path)
|
221 |
-
with open(file_path, "r") as f:
|
222 |
-
for line in f:
|
223 |
-
if line.strip() == "":
|
224 |
-
continue
|
225 |
-
data = json.loads(line)
|
226 |
-
data = {k.lower(): v for k, v in data.items()}
|
227 |
-
|
228 |
-
images = data["images"] if "images" in data else data["image"]
|
229 |
-
assert len(images) != 0
|
230 |
-
|
231 |
-
abs_images = []
|
232 |
-
for image in images:
|
233 |
-
image_path = os.path.join(earth_dir, image)
|
234 |
-
if not os.path.exists(image_path):
|
235 |
-
image_path = os.path.join(folder_path, image)
|
236 |
-
assert os.path.exists(image_path), f"Image not found: {image_path}"
|
237 |
-
md5hash = hashlib.md5(Image.open(image_path).tobytes()).hexdigest()
|
238 |
-
new_image_path = os.path.join(OUTPUT_PATH, "images", f"{image.split('.')[0].replace('/', '_')}_{md5hash}.{image.split('.')[1]}")
|
239 |
-
if not os.path.exists(new_image_path):
|
240 |
-
shutil.copy(image_path, new_image_path)
|
241 |
-
abs_images.append(new_image_path)
|
242 |
-
|
243 |
-
question_text = data["text"]
|
244 |
-
missing_images = len(images) - question_text.count("<image>") - sum([option.count("<image>") for option in data["answer choices"]])
|
245 |
-
question_text = " ".join(["<image>" for _ in range(missing_images)]) + " " + question_text
|
246 |
-
question_text = question_text.strip()
|
247 |
-
assert len(images) == question_text.count("<image>") + sum([option.count("<image>") for option in data["answer choices"]])
|
248 |
-
|
249 |
-
if folder_name in ["E011", "E012"]:
|
250 |
-
print("adding task-specific prompts")
|
251 |
-
task_prompt = open(os.path.join(folder_path, f"{LANG}.prompt.txt")).read()
|
252 |
-
question_text = f"{question_text}\n\n{task_prompt}"
|
253 |
-
|
254 |
-
assert parse_float_sequence_within(str(data["ground truth"])) is not None
|
255 |
-
|
256 |
-
question_options_ = data["answer choices"]
|
257 |
-
question_type = enumerate_question_types(data["question type"])
|
258 |
-
question_answer = str(data["ground truth"])
|
259 |
-
|
260 |
-
question_ids.append(data["question_id"])
|
261 |
-
question_texts.append(question_text)
|
262 |
-
question_options.append(question_options_)
|
263 |
-
question_images.append(abs_images)
|
264 |
-
question_answers.append(question_answer)
|
265 |
-
question_types.append(question_type)
|
266 |
-
question_fields.append("earth")
|
267 |
-
if not file_processed:
|
268 |
-
print(folder_path)
|
269 |
-
raise
|
270 |
-
print("earth data loaded")
|
271 |
-
|
272 |
-
# load life data
|
273 |
-
for folder_name in os.listdir(life_dir):
|
274 |
-
if not folder_name.startswith("L"):
|
275 |
-
continue
|
276 |
-
|
277 |
-
if ENABLE_FILETER and not folder_name.lower() in FILTERS:
|
278 |
-
continue
|
279 |
-
|
280 |
-
folder_path = os.path.join(life_dir, folder_name)
|
281 |
-
if not os.path.isdir(folder_path):
|
282 |
-
continue
|
283 |
-
|
284 |
-
file_processed = False
|
285 |
-
for file_name in os.listdir(folder_path):
|
286 |
-
if not file_name.endswith(".jsonl"):
|
287 |
-
continue
|
288 |
-
if not file_name.startswith(LANG):
|
289 |
-
continue
|
290 |
-
file_processed = True
|
291 |
-
file_path = os.path.join(folder_path, file_name)
|
292 |
-
print(file_path)
|
293 |
-
with open(file_path, "r") as f:
|
294 |
-
for line in f:
|
295 |
-
if line.strip() == "":
|
296 |
-
continue
|
297 |
-
data = json.loads(line)
|
298 |
-
data = {k.lower(): v for k, v in data.items()}
|
299 |
-
|
300 |
-
images = data["images"] if "images" in data else data["image"]
|
301 |
-
assert len(images) != 0
|
302 |
-
|
303 |
-
abs_images = []
|
304 |
-
for image in images:
|
305 |
-
image_path = os.path.join(life_dir, image)
|
306 |
-
if not os.path.exists(image_path):
|
307 |
-
image_path = os.path.join(folder_path, image)
|
308 |
-
assert os.path.exists(image_path), f"Image not found: {image_path}"
|
309 |
-
md5hash = hashlib.md5(Image.open(image_path).tobytes()).hexdigest()
|
310 |
-
new_image_path = os.path.join(OUTPUT_PATH, "images", f"{image.split('.')[0].replace('/', '_')}_{md5hash}.{image.split('.')[1]}")
|
311 |
-
if not os.path.exists(new_image_path):
|
312 |
-
shutil.copy(image_path, new_image_path)
|
313 |
-
abs_images.append(new_image_path)
|
314 |
-
|
315 |
-
question_text = data["text"]
|
316 |
-
missing_images = len(images) - question_text.count("<image>") - sum([option.count("<image>") for option in data["answer choices"]])
|
317 |
-
question_text = " ".join(["<image>" for _ in range(missing_images)]) + " " + question_text
|
318 |
-
question_text = question_text.strip()
|
319 |
-
assert len(images) == question_text.count("<image>") + sum([option.count("<image>") for option in data["answer choices"]])
|
320 |
-
|
321 |
-
question_options_ = data["answer choices"]
|
322 |
-
question_type = enumerate_question_types(data["question type"])
|
323 |
-
question_answer = str(data["ground truth"])
|
324 |
-
|
325 |
-
question_ids.append(data["question_id"])
|
326 |
-
question_texts.append(question_text)
|
327 |
-
question_options.append(question_options_)
|
328 |
-
question_images.append(abs_images)
|
329 |
-
question_answers.append(question_answer)
|
330 |
-
question_types.append(question_type)
|
331 |
-
question_fields.append("life")
|
332 |
-
if not file_processed:
|
333 |
-
print(folder_path)
|
334 |
-
raise
|
335 |
-
print("life data loaded")
|
336 |
-
|
337 |
-
# load mat data
|
338 |
-
for folder_name in os.listdir(mat_dir):
|
339 |
-
if not folder_name.startswith("M"):
|
340 |
-
continue
|
341 |
-
|
342 |
-
if ENABLE_FILETER and not folder_name.lower() in FILTERS:
|
343 |
-
continue
|
344 |
-
|
345 |
-
folder_path = os.path.join(mat_dir, folder_name)
|
346 |
-
if not os.path.isdir(folder_path):
|
347 |
-
continue
|
348 |
-
|
349 |
-
file_processed = False
|
350 |
-
for file_name in os.listdir(folder_path):
|
351 |
-
if not file_name.endswith(".jsonl"):
|
352 |
-
continue
|
353 |
-
if not file_name.startswith(LANG):
|
354 |
-
continue
|
355 |
-
file_processed = True
|
356 |
-
file_path = os.path.join(folder_path, file_name)
|
357 |
-
print(file_path)
|
358 |
-
with open(file_path, "r") as f:
|
359 |
-
for line in f:
|
360 |
-
if line.strip() == "":
|
361 |
-
continue
|
362 |
-
data = json.loads(line)
|
363 |
-
data = {k.lower(): v for k, v in data.items()}
|
364 |
-
|
365 |
-
images = data["images"] if "images" in data else data["image"]
|
366 |
-
assert len(images) != 0
|
367 |
-
|
368 |
-
abs_images = []
|
369 |
-
for image in images:
|
370 |
-
image_path = os.path.join(mat_dir, image)
|
371 |
-
if not os.path.exists(image_path):
|
372 |
-
image_path = os.path.join(folder_path, image)
|
373 |
-
assert os.path.exists(image_path), f"Image not found: {image_path}"
|
374 |
-
md5hash = hashlib.md5(Image.open(image_path).tobytes()).hexdigest()
|
375 |
-
new_image_path = os.path.join(OUTPUT_PATH, "images", f"{image.split('.')[0].replace('/', '_')}_{md5hash}.{image.split('.')[1]}")
|
376 |
-
if not os.path.exists(new_image_path):
|
377 |
-
shutil.copy(image_path, new_image_path)
|
378 |
-
abs_images.append(new_image_path)
|
379 |
-
|
380 |
-
question_text = data["text"]
|
381 |
-
missing_images = len(images) - question_text.count("<image>") - sum([option.count("<image>") for option in data["answer choices"]])
|
382 |
-
question_text = " ".join(["<image>" for _ in range(missing_images)]) + " " + question_text
|
383 |
-
question_text = question_text.strip()
|
384 |
-
assert len(images) == question_text.count("<image>") + sum([option.count("<image>") for option in data["answer choices"]])
|
385 |
-
|
386 |
-
question_options_ = data["answer choices"]
|
387 |
-
question_type = enumerate_question_types(data["question type"])
|
388 |
-
question_answer = str(data["ground truth"])
|
389 |
-
|
390 |
-
question_ids.append(data["question_id"])
|
391 |
-
question_texts.append(question_text)
|
392 |
-
question_options.append(question_options_)
|
393 |
-
question_images.append(abs_images)
|
394 |
-
question_answers.append(question_answer)
|
395 |
-
question_types.append(question_type)
|
396 |
-
question_fields.append("material")
|
397 |
-
if not file_processed:
|
398 |
-
print(folder_path)
|
399 |
-
raise
|
400 |
-
print("mat data loaded")
|
401 |
-
|
402 |
-
dataset_dict = {
|
403 |
-
"id": question_ids,
|
404 |
-
"question": question_texts,
|
405 |
-
"options": question_options,
|
406 |
-
"answer": question_answers,
|
407 |
-
"images": question_images,
|
408 |
-
"question_type": question_types,
|
409 |
-
"field": question_fields,
|
410 |
-
"lang": [LANG for _ in range(len(question_ids))],
|
411 |
-
}
|
412 |
-
|
413 |
-
dataset = Dataset.from_dict(dataset_dict)
|
414 |
-
|
415 |
-
dataset_split = DatasetDict({
|
416 |
-
"test": dataset
|
417 |
-
})
|
418 |
-
print(dataset_split)
|
419 |
-
# get the first row
|
420 |
-
print(dataset_split["test"][0])
|
421 |
-
|
422 |
-
# save dataset
|
423 |
-
os.makedirs(os.path.join(OUTPUT_PATH, VERSION), exist_ok=True)
|
424 |
-
test_split_path = os.path.join(OUTPUT_PATH, VERSION, "test.parquet")
|
425 |
-
dataset_split["test"].to_parquet(test_split_path)
|
426 |
-
|
427 |
-
metadata_path = os.path.join(OUTPUT_PATH, VERSION, "dataset_info.json")
|
428 |
-
with open(metadata_path, "w") as f:
|
429 |
-
json.dump({"splits": ["test"]}, f)
|
430 |
-
# dataset.to_parquet(os.path.join(OUTPUT_PATH, VERSION, "data.parquet"))
|
431 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|