ingerid commited on
Commit
f5a895d
1 Parent(s): 8fc4289

feat: add template file for the data loading script

Browse files
Files changed (1) hide show
  1. nb_samtale.py +165 -0
nb_samtale.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # Lint as: python3
16
+ """NB Samtale: Norwegian conversation speech corpus"""
17
+
18
+
19
+ import csv
20
+ import json
21
+ import os
22
+
23
+ import datasets
24
+
25
+
26
+ # TODO: Add BibTeX citation
27
+ # Find for instance the citation on arxiv or on the dataset repo/website
28
+
29
+
30
+ _DESCRIPTION = """\
31
+ NB Samtale is a speech corpus made by the Language Bank at the National Library of Norway.
32
+ The corpus contains orthographically transcribed speech from podcasts and recordings of live events at the National Library.
33
+ The corpus is intended as an open source dataset for Automatic Speech Recognition (ASR) development,
34
+ and is specifically aimed at improving ASR systems’ handle on conversational speech.
35
+ """
36
+
37
+ _HOMEPAGE = "https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-85/"
38
+
39
+ _LICENSE = "CC-ZERO-license"
40
+
41
+ # TODO: Add link to the official dataset URLs here
42
+ # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
43
+ # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
44
+ _URLS = {
45
+ "first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
46
+ "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
47
+ }
48
+
49
+
50
+ # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
51
+ class NewDataset(datasets.GeneratorBasedBuilder):
52
+ """TODO: Short description of my dataset."""
53
+
54
+ VERSION = datasets.Version("1.1.0")
55
+
56
+ # This is an example of a dataset with multiple configurations.
57
+ # If you don't want/need to define several sub-sets in your dataset,
58
+ # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
59
+
60
+ # If you need to make complex sub-parts in the datasets with configurable options
61
+ # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
62
+ # BUILDER_CONFIG_CLASS = MyBuilderConfig
63
+
64
+ # You will be able to load one or the other configurations in the following list with
65
+ # data = datasets.load_dataset('my_dataset', 'first_domain')
66
+ # data = datasets.load_dataset('my_dataset', 'second_domain')
67
+ BUILDER_CONFIGS = [
68
+ datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"),
69
+ datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"),
70
+ ]
71
+
72
+ DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
73
+
74
+ def _info(self):
75
+ # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
76
+ if self.config.name == "first_domain": # This is the name of the configuration selected in BUILDER_CONFIGS above
77
+ features = datasets.Features(
78
+ {
79
+ "sentence": datasets.Value("string"),
80
+ "option1": datasets.Value("string"),
81
+ "answer": datasets.Value("string")
82
+ # These are the features of your dataset like images, labels ...
83
+ }
84
+ )
85
+ else: # This is an example to show how to have different features for "first_domain" and "second_domain"
86
+ features = datasets.Features(
87
+ {
88
+ "sentence": datasets.Value("string"),
89
+ "option2": datasets.Value("string"),
90
+ "second_domain_answer": datasets.Value("string")
91
+ # These are the features of your dataset like images, labels ...
92
+ }
93
+ )
94
+ return datasets.DatasetInfo(
95
+ # This is the description that will appear on the datasets page.
96
+ description=_DESCRIPTION,
97
+ # This defines the different columns of the dataset and their types
98
+ features=features, # Here we define them above because they are different between the two configurations
99
+ # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
100
+ # specify them. They'll be used if as_supervised=True in builder.as_dataset.
101
+ # supervised_keys=("sentence", "label"),
102
+ # Homepage of the dataset for documentation
103
+ homepage=_HOMEPAGE,
104
+ # License for the dataset if available
105
+ license=_LICENSE,
106
+ # Citation for the dataset
107
+ citation=_CITATION,
108
+ )
109
+
110
+ def _split_generators(self, dl_manager):
111
+ # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
112
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
113
+
114
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
115
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
116
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
117
+ urls = _URLS[self.config.name]
118
+ data_dir = dl_manager.download_and_extract(urls)
119
+ return [
120
+ datasets.SplitGenerator(
121
+ name=datasets.Split.TRAIN,
122
+ # These kwargs will be passed to _generate_examples
123
+ gen_kwargs={
124
+ "filepath": os.path.join(data_dir, "train.jsonl"),
125
+ "split": "train",
126
+ },
127
+ ),
128
+ datasets.SplitGenerator(
129
+ name=datasets.Split.VALIDATION,
130
+ # These kwargs will be passed to _generate_examples
131
+ gen_kwargs={
132
+ "filepath": os.path.join(data_dir, "dev.jsonl"),
133
+ "split": "dev",
134
+ },
135
+ ),
136
+ datasets.SplitGenerator(
137
+ name=datasets.Split.TEST,
138
+ # These kwargs will be passed to _generate_examples
139
+ gen_kwargs={
140
+ "filepath": os.path.join(data_dir, "test.jsonl"),
141
+ "split": "test"
142
+ },
143
+ ),
144
+ ]
145
+
146
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
147
+ def _generate_examples(self, filepath, split):
148
+ # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
149
+ # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
150
+ with open(filepath, encoding="utf-8") as f:
151
+ for key, row in enumerate(f):
152
+ data = json.loads(row)
153
+ if self.config.name == "first_domain":
154
+ # Yields examples as (key, example) tuples
155
+ yield key, {
156
+ "sentence": data["sentence"],
157
+ "option1": data["option1"],
158
+ "answer": "" if split == "test" else data["answer"],
159
+ }
160
+ else:
161
+ yield key, {
162
+ "sentence": data["sentence"],
163
+ "option2": data["option2"],
164
+ "second_domain_answer": "" if split == "test" else data["second_domain_answer"],
165
+ }