import datasets import json from PIL import Image def train_data_format(json_to_dict: list): final_list = [] count = 0 for item in json_to_dict: count = count + 1 # print(item['annotations']) test_dict = {"id": int, "tokens": [], "bboxes": [], "ner_tags": []} # test_dict = {"tokens": [], "bboxes": [], "ner_tags": []} test_dict["id"] = count # test_dict["img_path"] = item["file_name"] # print(item) test_dict["image"] = Image.open(item["file_name"]).convert("RGB") # test_dict["image"] = item["file_name"] for cont in item["annotations"]: test_dict["tokens"].append(cont["text"]) test_dict["bboxes"].append(cont["box"]) test_dict["ner_tags"].append(cont["label"]) final_list.append(test_dict) # print(final_list) return final_list def read_json(json_path: str) -> dict: with open(json_path, "r") as fp: data = json.loads(fp.read()) return data class MyDataset(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( features=datasets.Features( { "id": datasets.Value("string"), "image": datasets.Image(), "tokens": datasets.Sequence(datasets.Value("string")), "bboxes": datasets.Sequence( datasets.Sequence(datasets.Value("int32")) ), "ner_tags": datasets.Sequence( datasets.ClassLabel( num_classes=3, names=["Other", "Patient_name", "Patient_address"], ) ), } ) ) def _split_generators(self, dl_manager): return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": "Training_layoutLMV3.json", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": "Training_layoutLMV3.json", }, ), ] def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" # print(filepath) # print(read_json(filepath)) # print(train_data_format(read_json(filepath))) for id_, row in enumerate(train_data_format(read_json(filepath))): yield id_, row