Daniel O'Connell
commited on
Commit
·
5bbd8e9
1
Parent(s):
c3c2492
add loader script
Browse files- README.md +36 -2
- alignment-research-dataset.py +315 -0
README.md
CHANGED
@@ -17,7 +17,7 @@ It is currently maintained and kept up-to-date by volunteers at StampyAI / AI Sa
|
|
17 |
|
18 |
## Sources
|
19 |
|
20 |
-
The important thing here is that not all of the dataset entries contain all the same keys.
|
21 |
|
22 |
They all have the keys: id, source, title, text, and url
|
23 |
|
@@ -55,6 +55,41 @@ Other keys are available depending on the source document.
|
|
55 |
|
56 |
2. `alignment_text`: This is label specific to the arXiv papers. We added papers to the dataset using Allen AI's SPECTER model and included all the papers that got a confidence score of over 75%. However, since we could not verify with certainty that those papers where about alignment, we've decided to create the `alignment_text` key with the value `"pos"` when we manually labeled it as an alignment text and `"unlabeled"` when we have not labeled it yet. Additionally, we've only included the `text` for the `"pos"` entries, not the `"unlabeled"` entries.
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
## Contributing
|
59 |
|
60 |
Join us at [StampyAI](https://coda.io/d/AI-Safety-Info_dfau7sl2hmG/Get-involved_susRF#_lufSr).
|
@@ -64,4 +99,3 @@ Join us at [StampyAI](https://coda.io/d/AI-Safety-Info_dfau7sl2hmG/Get-involved_
|
|
64 |
Please use the following citation when using our dataset:
|
65 |
|
66 |
Kirchner, J. H., Smith, L., Thibodeau, J., McDonnell, K., and Reynolds, L. "Understanding AI alignment research: A Systematic Analysis." arXiv preprint arXiv:2022.4338861 (2022).
|
67 |
-
|
|
|
17 |
|
18 |
## Sources
|
19 |
|
20 |
+
The important thing here is that not all of the dataset entries contain all the same keys.
|
21 |
|
22 |
They all have the keys: id, source, title, text, and url
|
23 |
|
|
|
55 |
|
56 |
2. `alignment_text`: This is label specific to the arXiv papers. We added papers to the dataset using Allen AI's SPECTER model and included all the papers that got a confidence score of over 75%. However, since we could not verify with certainty that those papers where about alignment, we've decided to create the `alignment_text` key with the value `"pos"` when we manually labeled it as an alignment text and `"unlabeled"` when we have not labeled it yet. Additionally, we've only included the `text` for the `"pos"` entries, not the `"unlabeled"` entries.
|
57 |
|
58 |
+
## Usage
|
59 |
+
|
60 |
+
Execute the following code to download and parse the files:
|
61 |
+
```
|
62 |
+
from datasets import load_dataset
|
63 |
+
data = load_dataset('StampyAI/alignment-research-dataset')
|
64 |
+
```
|
65 |
+
|
66 |
+
To only get the data for a specific source, pass it in as the second argument, e.g.:
|
67 |
+
|
68 |
+
```
|
69 |
+
from datasets import load_dataset
|
70 |
+
data = load_dataset('StampyAI/alignment-research-dataset', 'lesswrong')
|
71 |
+
```
|
72 |
+
|
73 |
+
The various sources have different keys - the resulting data object will have all keys that make sense, with `None** as the value of keys that aren't in a given source. For example, assuming there are the following sources with the appropriate features:
|
74 |
+
|
75 |
+
##### source1
|
76 |
+
+ id
|
77 |
+
+ name
|
78 |
+
+ description
|
79 |
+
+ author
|
80 |
+
|
81 |
+
##### source2
|
82 |
+
+ id
|
83 |
+
+ name
|
84 |
+
+ url
|
85 |
+
+ text
|
86 |
+
|
87 |
+
Then the resulting data object with have 6 columns, i.e. `id`, `name`, `description`, `author`, `url` and `text`, where rows from `source1` will have `None` in the `url` and `text` columns, and the `source2` rows will have `None` in their `description` and `author` columns.
|
88 |
+
|
89 |
+
## Limitations and bias
|
90 |
+
|
91 |
+
LessWrong posts have overweighted content on x-risk doom so beware of training or finetuning generative LLMs on the dataset.
|
92 |
+
|
93 |
## Contributing
|
94 |
|
95 |
Join us at [StampyAI](https://coda.io/d/AI-Safety-Info_dfau7sl2hmG/Get-involved_susRF#_lufSr).
|
|
|
99 |
Please use the following citation when using our dataset:
|
100 |
|
101 |
Kirchner, J. H., Smith, L., Thibodeau, J., McDonnell, K., and Reynolds, L. "Understanding AI alignment research: A Systematic Analysis." arXiv preprint arXiv:2022.4338861 (2022).
|
|
alignment-research-dataset.py
ADDED
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
from datasets import Value, Sequence
|
6 |
+
|
7 |
+
|
8 |
+
_CITATION = '''
|
9 |
+
@article{kirchner2022understanding,
|
10 |
+
title={Understanding AI Alignment Research: A Systematic Analysis},
|
11 |
+
author={Kirchner, Joshua H and Smith, Lauren and Thibodeau, Joseph and McDonnell, Kathleen and Reynolds, Lauren},
|
12 |
+
journal={arXiv preprint arXiv:2022.4338861},
|
13 |
+
year={2022}
|
14 |
+
}
|
15 |
+
'''
|
16 |
+
|
17 |
+
_DESCRIPTION = """A dataset of AI alignment research, collected from various sources."""
|
18 |
+
|
19 |
+
_HOMEPAGE = "https://github.com/StampyAI/alignment-research-dataset"
|
20 |
+
|
21 |
+
_LICENSE = ""
|
22 |
+
|
23 |
+
_VERSION_ = '0.0.0'
|
24 |
+
|
25 |
+
|
26 |
+
def iterate_file(filename):
|
27 |
+
with open(filename) as f:
|
28 |
+
for l in f:
|
29 |
+
try:
|
30 |
+
yield json.loads(l)
|
31 |
+
except Exception as e:
|
32 |
+
print(f'Could not parse: {l}')
|
33 |
+
|
34 |
+
|
35 |
+
## Feature extractor helpers
|
36 |
+
def get_type(value):
|
37 |
+
"""Recursively get the huggingface type for the provided value."""
|
38 |
+
if value is None:
|
39 |
+
return None
|
40 |
+
if value and isinstance(value, (tuple, list)):
|
41 |
+
return features.Sequence(
|
42 |
+
get_type(value[0])
|
43 |
+
)
|
44 |
+
if value and isinstance(value, dict):
|
45 |
+
return {k: get_type(v) for k, v in value.items()}
|
46 |
+
if isinstance(value, str):
|
47 |
+
return Value('string')
|
48 |
+
if isinstance(value, int):
|
49 |
+
return Value('int32')
|
50 |
+
if isinstance(value, float):
|
51 |
+
return Value('double')
|
52 |
+
if isinstance(value, bool):
|
53 |
+
return Value('bool')
|
54 |
+
return None
|
55 |
+
|
56 |
+
|
57 |
+
def print_extra_features(files):
|
58 |
+
"""Go through all the provided files, and get the non default features for the given file.
|
59 |
+
|
60 |
+
This can be done manually but would be a hassle.
|
61 |
+
It's assumed that the files contain a json object on each line.
|
62 |
+
"""
|
63 |
+
ignored_keys = [
|
64 |
+
'comments', # Comments are arbitrarily nested objects, which doesn't play nice with huggingface
|
65 |
+
]
|
66 |
+
|
67 |
+
per_file = {}
|
68 |
+
for filename in sorted(files):
|
69 |
+
extra_types = {}
|
70 |
+
for item in iterate_file(filename):
|
71 |
+
for k, v in item.items():
|
72 |
+
if (k not in extra_types or not extra_types[k]) and k not in ignored_keys and k not in DEFAULT_FEATURES:
|
73 |
+
extra_types[k] = get_type(v)
|
74 |
+
per_file[filename] = extra_types
|
75 |
+
|
76 |
+
print('DATASOURCES = {')
|
77 |
+
for k, features in per_file.items():
|
78 |
+
vals = ',\n'.join(f" '{k}': {v}" for k, v in features.items())
|
79 |
+
print(f" '{k.stem}': #\n{vals}\n $,".replace('#', '{').replace('$', '}'))
|
80 |
+
print('}')
|
81 |
+
|
82 |
+
|
83 |
+
# These keys are present in all files
|
84 |
+
DEFAULT_FEATURES = {
|
85 |
+
'id': Value('string'),
|
86 |
+
'source': Value('string'),
|
87 |
+
'title': Value('string'),
|
88 |
+
'text': Value('large_string'),
|
89 |
+
'url': Value('string'),
|
90 |
+
'date_published': Value(dtype='string'),
|
91 |
+
}
|
92 |
+
|
93 |
+
# Per datasource additional features
|
94 |
+
DATASOURCES = {
|
95 |
+
'agentmodels': {
|
96 |
+
'source_filetype': Value(dtype='string', id=None),
|
97 |
+
'converted_with': Value(dtype='string', id=None),
|
98 |
+
'book_title': Value(dtype='string', id=None),
|
99 |
+
'authors': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None)
|
100 |
+
},
|
101 |
+
'aiimpacts.org': {
|
102 |
+
'paged_url': Value(dtype='string', id=None)
|
103 |
+
},
|
104 |
+
'aipulse.org': {
|
105 |
+
'paged_url': Value(dtype='string', id=None)
|
106 |
+
},
|
107 |
+
'aisafety.camp': {
|
108 |
+
'paged_url': Value(dtype='string', id=None)
|
109 |
+
},
|
110 |
+
'alignment_newsletter': {
|
111 |
+
'converted_with': Value(dtype='string', id=None),
|
112 |
+
'source_type': Value(dtype='string', id=None),
|
113 |
+
'venue': Value(dtype='string', id=None),
|
114 |
+
'newsletter_category': Value(dtype='string', id=None),
|
115 |
+
'highlight': Value(dtype='int32', id=None),
|
116 |
+
'newsletter_number': Value(dtype='string', id=None),
|
117 |
+
'summarizer': Value(dtype='string', id=None),
|
118 |
+
'opinion': Value(dtype='string', id=None),
|
119 |
+
'prerequisites': Value(dtype='string', id=None),
|
120 |
+
'read_more': Value(dtype='string', id=None),
|
121 |
+
'authors': Value(dtype='string', id=None)
|
122 |
+
},
|
123 |
+
'arbital': {
|
124 |
+
'source_filetype': Value(dtype='string', id=None),
|
125 |
+
'authors': Value(dtype='string', id=None),
|
126 |
+
'alias': Value(dtype='string', id=None)
|
127 |
+
},
|
128 |
+
'arxiv_papers': {
|
129 |
+
'authors': Value(dtype='string', id=None),
|
130 |
+
'source_type': Value(dtype='string', id=None),
|
131 |
+
'converted_with': Value(dtype='string', id=None),
|
132 |
+
'data_last_modified': Value(dtype='string', id=None),
|
133 |
+
'abstract': Value(dtype='string', id=None),
|
134 |
+
'author_comment': Value(dtype='string', id=None),
|
135 |
+
'journal_ref': Value(dtype='string', id=None),
|
136 |
+
'doi': Value(dtype='string', id=None),
|
137 |
+
'primary_category': Value(dtype='string', id=None),
|
138 |
+
'categories': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None)
|
139 |
+
},
|
140 |
+
'audio_transcripts': {
|
141 |
+
'source_filetype': Value(dtype='string', id=None),
|
142 |
+
'converted_with': Value(dtype='string', id=None),
|
143 |
+
'authors': Value(dtype='string', id=None)
|
144 |
+
},
|
145 |
+
'carado.moe': {
|
146 |
+
'source_type': Value(dtype='string', id=None),
|
147 |
+
'authors': Value(dtype='string', id=None)
|
148 |
+
},
|
149 |
+
'cold.takes': {},
|
150 |
+
'deepmind.blog': {
|
151 |
+
'source_type': Value(dtype='string', id=None)
|
152 |
+
},
|
153 |
+
'distill': {
|
154 |
+
'source_type': Value(dtype='string', id=None),
|
155 |
+
'converted_with': Value(dtype='string', id=None),
|
156 |
+
'authors': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None),
|
157 |
+
'abstract': Value(dtype='string', id=None),
|
158 |
+
'journal_ref': Value(dtype='string', id=None),
|
159 |
+
'doi': Value(dtype='string', id=None),
|
160 |
+
'bibliography_bib': Sequence(feature={'title': Value(dtype='string', id=None)}, length=-1, id=None)
|
161 |
+
},
|
162 |
+
'eaforum': {
|
163 |
+
'authors': Value(dtype='string', id=None),
|
164 |
+
'score': Value(dtype='string', id=None),
|
165 |
+
'omega_karma': Value(dtype='string', id=None),
|
166 |
+
'votes': Value(dtype='string', id=None),
|
167 |
+
'tags': Value(dtype='string', id=None)
|
168 |
+
},
|
169 |
+
'gdocs': {
|
170 |
+
'source_filetype': Value(dtype='string', id=None),
|
171 |
+
'converted_with': Value(dtype='string', id=None),
|
172 |
+
'authors': Value(dtype='string', id=None),
|
173 |
+
'docx_name': Value(dtype='string', id=None)
|
174 |
+
},
|
175 |
+
'gdrive_ebooks': {
|
176 |
+
'source_filetype': Value(dtype='string', id=None),
|
177 |
+
'converted_with': Value(dtype='string', id=None),
|
178 |
+
'chapter_names': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None),
|
179 |
+
'file_name': Value(dtype='string', id=None)
|
180 |
+
},
|
181 |
+
'generative.ink': {},
|
182 |
+
'gwern_blog': {
|
183 |
+
'authors': Value(dtype='string', id=None)
|
184 |
+
},
|
185 |
+
'intelligence.org': {
|
186 |
+
'paged_url': Value(dtype='string', id=None)
|
187 |
+
},
|
188 |
+
'jsteinhardt.wordpress.com': {
|
189 |
+
'paged_url': Value(dtype='string', id=None)
|
190 |
+
},
|
191 |
+
'lesswrong': {
|
192 |
+
'authors': Value(dtype='string', id=None),
|
193 |
+
'score': Value(dtype='string', id=None),
|
194 |
+
'omega_karma': Value(dtype='string', id=None),
|
195 |
+
'votes': Value(dtype='string', id=None),
|
196 |
+
'tags': Value(dtype='string', id=None)
|
197 |
+
},
|
198 |
+
'markdown.ebooks': {
|
199 |
+
'source_type': Value(dtype='string', id=None),
|
200 |
+
'authors': Value(dtype='string', id=None),
|
201 |
+
'filename': Value(dtype='string', id=None)
|
202 |
+
},
|
203 |
+
'nonarxiv_papers': {
|
204 |
+
'source_filetype': Value(dtype='string', id=None),
|
205 |
+
'abstract': Value(dtype='string', id=None),
|
206 |
+
'authors': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None),
|
207 |
+
'filename': Value(dtype='string', id=None)
|
208 |
+
},
|
209 |
+
'qualiacomputing.com': {
|
210 |
+
'paged_url': Value(dtype='string', id=None)
|
211 |
+
},
|
212 |
+
'reports': {
|
213 |
+
'source_filetype': Value(dtype='string', id=None),
|
214 |
+
'abstract': Value(dtype='string', id=None),
|
215 |
+
'authors': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None),
|
216 |
+
'filename': Value(dtype='string', id=None)
|
217 |
+
},
|
218 |
+
'stampy': {
|
219 |
+
'source_filetype': Value(dtype='string', id=None),
|
220 |
+
'authors': Value(dtype='string', id=None),
|
221 |
+
'question': Value(dtype='string', id=None),
|
222 |
+
'answer': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None),
|
223 |
+
'entry': Value(dtype='string', id=None)
|
224 |
+
},
|
225 |
+
'vkrakovna.wordpress.com': {
|
226 |
+
'paged_url': Value(dtype='string', id=None)
|
227 |
+
},
|
228 |
+
'waitbutwhy': {
|
229 |
+
'source_type': Value(dtype='string', id=None),
|
230 |
+
'authors': Value(dtype='string', id=None)
|
231 |
+
},
|
232 |
+
'www.yudkowsky.net': {
|
233 |
+
'paged_url': Value(dtype='string', id=None)
|
234 |
+
},
|
235 |
+
}
|
236 |
+
|
237 |
+
|
238 |
+
def join_features(features, to_join):
|
239 |
+
"""Recursively join the provided dicts.
|
240 |
+
|
241 |
+
`to_join` can either be a dict to be merged, or a list of dicts to merge.
|
242 |
+
"""
|
243 |
+
if not to_join:
|
244 |
+
return datasets.Features(features)
|
245 |
+
if isinstance(to_join, dict):
|
246 |
+
return datasets.Features(dict(features, **to_join))
|
247 |
+
return join_features(dict(features, **to_join[0]), to_join[1:])
|
248 |
+
|
249 |
+
|
250 |
+
class AlignmentResearchDatasetConfig(datasets.BuilderConfig):
|
251 |
+
"""BuilderConfig for AlignmentResaerchDataset."""
|
252 |
+
|
253 |
+
def __init__(self, sources, features, **kwargs):
|
254 |
+
"""BuilderConfig for AlignmentResaerchDataset.
|
255 |
+
|
256 |
+
:param List[string] sources: the sources which will be used by this config
|
257 |
+
"""
|
258 |
+
super().__init__(version=datasets.Version(_VERSION_), **kwargs)
|
259 |
+
self.sources = sources
|
260 |
+
self.features = join_features(DEFAULT_FEATURES, features)
|
261 |
+
|
262 |
+
@property
|
263 |
+
def files(self):
|
264 |
+
return [f'{source}.jsonl' for source in self.sources]
|
265 |
+
|
266 |
+
|
267 |
+
class AlignmentResaerchDataset(datasets.GeneratorBasedBuilder):
|
268 |
+
VERSION = datasets.Version(_VERSION_)
|
269 |
+
|
270 |
+
BUILDER_CONFIGS = [
|
271 |
+
AlignmentResearchDatasetConfig(
|
272 |
+
name='all',
|
273 |
+
description='All data files',
|
274 |
+
sources=list(DATASOURCES.keys()),
|
275 |
+
features=list(DATASOURCES.values())
|
276 |
+
)
|
277 |
+
] + [
|
278 |
+
AlignmentResearchDatasetConfig(name=source, sources=[source], features=features) for source, features in DATASOURCES.items()
|
279 |
+
]
|
280 |
+
DEFAULT_CONFIG_NAME = 'all'
|
281 |
+
|
282 |
+
def _info(self):
|
283 |
+
return datasets.DatasetInfo(
|
284 |
+
description=_DESCRIPTION,
|
285 |
+
features=self.config.features,
|
286 |
+
homepage=_HOMEPAGE,
|
287 |
+
license=_LICENSE,
|
288 |
+
citation=_CITATION,
|
289 |
+
)
|
290 |
+
|
291 |
+
def _split_generators(self, dl_manager):
|
292 |
+
return [
|
293 |
+
datasets.SplitGenerator(
|
294 |
+
name=datasets.Split.TRAIN,
|
295 |
+
gen_kwargs={'files': dl_manager.download(self.config.files)}
|
296 |
+
)
|
297 |
+
]
|
298 |
+
|
299 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
300 |
+
def _generate_examples(self, files):
|
301 |
+
seen = set()
|
302 |
+
|
303 |
+
def is_good(item):
|
304 |
+
item_id = item and item.get('id')
|
305 |
+
if not item_id or item_id in seen:
|
306 |
+
return False
|
307 |
+
seen.add(item_id)
|
308 |
+
|
309 |
+
return item['text'] not in [None, '', 'n/a']
|
310 |
+
|
311 |
+
def prepare_example(item):
|
312 |
+
return item['id'], {k: item.get(k) for k in self.config.features}
|
313 |
+
|
314 |
+
lines = (item for filename in files for item in iterate_file(filename))
|
315 |
+
return map(prepare_example, filter(is_good, lines))
|