File size: 5,275 Bytes
6d3571c 3ec29d3 6d3571c 3ec29d3 6d3571c 3ec29d3 6d3571c 2d8ec6e 95b84b7 2d8ec6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
---
dataset_info:
- config_name: metadata
features:
- name: asin
dtype: string
- name: title
dtype: string
- name: description
dtype: string
- name: brand
dtype: string
- name: categories
sequence:
sequence: string
- name: price
dtype: float64
- name: salesRank
struct:
- name: Arts, Crafts & Sewing
dtype: int64
- name: Automotive
dtype: int64
- name: Baby
dtype: int64
- name: Beauty
dtype: int64
- name: Books
dtype: int64
- name: Camera & Photo
dtype: int64
- name: Cell Phones & Accessories
dtype: int64
- name: Clothing
dtype: int64
- name: Computers & Accessories
dtype: int64
- name: Electronics
dtype: int64
- name: Grocery & Gourmet Food
dtype: int64
- name: Health & Personal Care
dtype: int64
- name: Home & Kitchen
dtype: int64
- name: Home Improvement
dtype: int64
- name: Industrial & Scientific
dtype: int64
- name: Jewelry
dtype: int64
- name: Kitchen & Dining
dtype: int64
- name: Magazines
dtype: int64
- name: Movies & TV
dtype: int64
- name: Music
dtype: int64
- name: Musical Instruments
dtype: int64
- name: Office Products
dtype: int64
- name: Patio, Lawn & Garden
dtype: int64
- name: Pet Supplies
dtype: int64
- name: Shoes
dtype: int64
- name: Software
dtype: int64
- name: Sports & Outdoors
dtype: int64
- name: Toys & Games
dtype: int64
- name: Watches
dtype: int64
- name: imUrl
dtype: string
- name: also_bought
sequence: string
- name: also_viewed
sequence: string
- name: bought_together
sequence: string
- name: buy_after_viewing
sequence: string
splits:
- name: train
num_bytes: 359046349
num_examples: 259070
download_size: 141907265
dataset_size: 359046349
- config_name: reviews
features:
- name: reviewerID
dtype: string
- name: reviewerName
dtype: string
- name: overall
sequence: int64
- name: reviewTime
sequence: timestamp[us]
- name: asin
sequence: string
- name: reviewText
sequence: string
- name: summary
sequence: string
splits:
- name: train
num_bytes: 847333669
num_examples: 1210271
download_size: 512228398
dataset_size: 847333669
configs:
- config_name: metadata
data_files:
- split: train
path: metadata/train-*
- config_name: reviews
data_files:
- split: train
path: reviews/train-*
---
# Amazon Beauty Dataset
## Directory Structure
- **metadata**: Contains product information.
- **reviews**: Contains user reviews about the products.
- **filtered**:
- **e5-base-v2_embeddings.jsonl**: Contains "asin" and "embeddings" created with [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2).
- **metadata.jsonl**: Contains "asin" and "text", where text is created from the title, description, brand, main category, and category.
- **reviews.jsonl**: Contains "reviewerID", "reviewTime", and "asin". Reviews are filtered to include only perfect 5-star ratings with a minimum of 5 ratings.
## Usage
### Download metadata
```python
metadata = load_dataset(path="Studeni/Amazon_Beauty_2014", name="metadata", split="train")
```
### Download reviews
```python
metadata = load_dataset(path="Studeni/Amazon_Beauty_2014", name="reviews", split="train")
```
### Download filtered files
```python
filtered_reviews = load_dataset(
path="Studeni/Amazon_Beauty_2014",
data_files="filtered/reviews.parquet",
split="train",
)
```
**📎 Note:** You can set any file or list of files from the "filtered" directory as the "data_files" argument.
## Citation
### Amazon Reviews 2023
```bibtex
@article{hou2024bridging,
title={Bridging language and items for retrieval and recommendation},
author={Hou, Yupeng and Li, Jiacheng and He, Zhankui and Yan, An and Chen, Xiusi and McAuley, Julian},
journal={arXiv preprint arXiv:2403.03952},
year={2024}
}
```
### Amazon Reviews 2018
```bibtex
@inproceedings{ni2019justifying,
title={Justifying recommendations using distantly-labeled reviews and fine-grained aspects},
author={Ni, Jianmo and Li, Jiacheng and McAuley, Julian},
booktitle={Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP)},
pages={188--197},
year={2019}
}
```
### Amazon Reviews 2014
```bibtex
@inproceedings{he2016ups,
title={Ups and downs: Modeling the visual evolution of fashion trends with one-class collaborative filtering},
author={He, Ruining and McAuley, Julian},
booktitle={proceedings of the 25th international conference on world wide web},
pages={507--517},
year={2016}
}
```
```bibtex
@inproceedings{mcauley2015image,
title={Image-based recommendations on styles and substitutes},
author={McAuley, Julian and Targett, Christopher and Shi, Qinfeng and Van Den Hengel, Anton},
booktitle={Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval},
pages={43--52},
year={2015}
}
```
|