File size: 5,813 Bytes
3bf15ee b49462b 3bf15ee 6aa838d 3bf15ee b49462b 3bf15ee 6aa838d 2bb862f 3bf15ee 2bb862f 9aea97c 2bb862f b124fe8 2bb862f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
---
dataset_info:
- config_name: products
features:
- name: product_id
dtype: string
- name: product_title
dtype: string
- name: product_description
dtype: string
- name: product_bullet_point
dtype: string
- name: product_brand
dtype: string
- name: product_color
dtype: string
- name: product_locale
dtype: string
- name: split
dtype: string
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 1650407845
num_examples: 1371823
- name: test
num_bytes: 537176847
num_examples: 443101
download_size: 1149707182
dataset_size: 2187584692
- config_name: queries
features:
- name: example_id
dtype: int64
- name: query
dtype: string
- name: query_id
dtype: int64
- name: product_id
dtype: string
- name: product_locale
dtype: string
- name: esci_label
dtype: string
- name: small_version
dtype: int64
- name: large_version
dtype: int64
- name: split
dtype: string
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 198670365
num_examples: 1983272
- name: test
num_bytes: 63544917
num_examples: 638016
download_size: 63596052
dataset_size: 262215282
- config_name: sources
features:
- name: query_id
dtype: int64
- name: source
dtype: string
- name: split
dtype: string
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 3458419
num_examples: 99683
- name: test
num_bytes: 1048200
num_examples: 30969
download_size: 1510331
dataset_size: 4506619
configs:
- config_name: products
data_files:
- split: train
path: products/train-*
- split: test
path: products/test-*
- config_name: queries
data_files:
- split: train
path: queries/train-*
- split: test
path: queries/test-*
- config_name: sources
data_files:
- split: train
path: sources/train-*
- split: test
path: sources/test-*
license: apache-2.0
task_categories:
- text-classification
- token-classification
- text-generation
- text2text-generation
- sentence-similarity
language:
- en
- ja
- es
tags:
- amazon
- retrieval
- search
- ecommerce
- ranking
- reranking
size_categories:
- 1M<n<10M
---
# Amazon Shopping Queries Dataset
A comprehensive dataset for improving product search, ranking and recommendations, featuring query-product pairs with detailed relevance labels.
## Overview
The dataset contains search queries paired with up to 40 potentially relevant products, each labeled using the ESCI system:
- **E**xact match: Products that perfectly match the customer's search intent (e.g., searching "iPhone 13" and finding "Apple iPhone 13 128GB")
- **S**ubstitute product: Alternative products that could satisfy the same need (e.g., searching "iPhone 13" and finding "iPhone 14" or "Samsung Galaxy S23")
- **C**omplement product: Products commonly bought together with the searched item (e.g., searching "iPhone 13" and finding "iPhone 13 case" or "screen protector")
- **I**rrelevant result: Products that don't match the customer's search intent (e.g., searching "iPhone 13" and finding "laptop charger")
## Dataset Statistics
### Reduced Version (Task 1)
- 48,300 unique queries
- 1,118,011 query-product pairs
- **Focus**: Filtered to exclude "easy" queries, making it more challenging
- Language distribution:
- English (US): 29,844 queries
- Spanish (ES): 8,049 queries
- Japanese (JP): 10,407 queries
### Full Version (Tasks 2 & 3)
- 130,652 unique queries
- 2,621,738 query-product pairs
- **Focus**: Includes both easy and challenging queries
- Language distribution:
- English (US): 97,345 queries
- Spanish (ES): 15,180 queries
- Japanese (JP): 18,127 queries
## Features
- Rich product metadata including:
- Product title
- Product description
- Product bullet points
- Brand information
- Color information
- Multilingual support (English, Japanese, Spanish)
- Train/test splits for each task
## Download
Install `datasets` library:
```bash
pip install datasets
```
Donwload files:
```python
from datasets import load_dataset
queries = load_dataset(path="Studeni/amazon-esci-data", name="queries", split=["train", "test"])
products = load_dataset(path="Studeni/amazon-esci-data", name="products", split=["train", "test"])
sources = load_dataset(path="Studeni/amazon-esci-data", name="sources", split=["train", "test"])
```
## Use Cases
1. **Product Ranking**: Develop algorithms to rank relevant products higher in search results
2. **Relevance Classification**: Build models to classify products as Exact, Substitute, Complement, or Irrelevant
3. **Substitute Detection**: Identify substitute products for improved product recommendations
4. **Semantic Search**: Train embedding models (like BERT, sentence-transformers) to:
- Capture semantic similarity between queries and products
- Handle long-tail queries with no exact keyword matches
- Understand product relationships across categories
- Example: Query "comfortable running shoes for marathon" can match with "Nike Air Zoom Alphafly" even without exact keyword overlap
## Citation
Originally sourced from ["Shopping Queries Dataset: A Large-Scale ESCI Benchmark for Improving Product Search"](https://github.com/amazon-science/esci-data?tab=readme-ov-file), this version is optimized for machine learning applications and semantic search research.
```
@article{reddy2022shopping,
title={Shopping Queries Dataset: A Large-Scale {ESCI} Benchmark for Improving Product Search},
author={Chandan K. Reddy and Lluís Màrquez and Fran Valero and Nikhil Rao and Hugo Zaragoza and Sambaran Bandyopadhyay and Arnab Biswas and Anlu Xing and Karthik Subbian},
year={2022},
eprint={2206.06588},
archivePrefix={arXiv}
}
``` |