Studeni commited on
Commit
2bb862f
·
verified ·
1 Parent(s): 6aa838d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md CHANGED
@@ -98,4 +98,86 @@ configs:
98
  path: sources/train-*
99
  - split: test
100
  path: sources/test-*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98
  path: sources/train-*
99
  - split: test
100
  path: sources/test-*
101
+ license: apache-2.0
102
+ task_categories:
103
+ - text-classification
104
+ - token-classification
105
+ - text-generation
106
+ - text2text-generation
107
+ - sentence-similarity
108
+ language:
109
+ - en
110
+ - ja
111
+ - es
112
+ tags:
113
+ - amazon
114
+ - retrieval
115
+ - search
116
+ - ecommerce
117
+ - ranking
118
+ - reranking
119
+ size_categories:
120
+ - 1M<n<10M
121
  ---
122
+
123
+ # Amazon Shopping Queries Dataset
124
+
125
+ A comprehensive dataset for improving product search, ranking and recommendations, featuring query-product pairs with detailed relevance labels.
126
+
127
+ ## Overview
128
+ The dataset contains search queries paired with up to 40 potentially relevant products, each labeled using the ESCI system:
129
+ - **E**xact match: Products that perfectly match the customer's search intent (e.g., searching "iPhone 13" and finding "Apple iPhone 13 128GB")
130
+ - **S**ubstitute product: Alternative products that could satisfy the same need (e.g., searching "iPhone 13" and finding "iPhone 14" or "Samsung Galaxy S23")
131
+ - **C**omplement product: Products commonly bought together with the searched item (e.g., searching "iPhone 13" and finding "iPhone 13 case" or "screen protector")
132
+ - **I**rrelevant result: Products that don't match the customer's search intent (e.g., searching "iPhone 13" and finding "laptop charger")
133
+
134
+ ## Dataset Statistics
135
+ ### Reduced Version (Task 1)
136
+ - 48,300 unique queries
137
+ - 1,118,011 query-product pairs
138
+ - **Focus**: Filtered to exclude "easy" queries, making it more challenging
139
+ - Language distribution:
140
+ - English (US): 29,844 queries
141
+ - Spanish (ES): 8,049 queries
142
+ - Japanese (JP): 10,407 queries
143
+
144
+ ### Full Version (Tasks 2 & 3)
145
+ - 130,652 unique queries
146
+ - 2,621,738 query-product pairs
147
+ - **Focus**: Includes both easy and challenging queries
148
+ - Language distribution:
149
+ - English (US): 97,345 queries
150
+ - Spanish (ES): 15,180 queries
151
+ - Japanese (JP): 18,127 queries
152
+
153
+ ## Features
154
+ - Rich product metadata including:
155
+ - Product title
156
+ - Product description
157
+ - Product bullet points
158
+ - Brand information
159
+ - Color information
160
+ - Multilingual support (English, Japanese, Spanish)
161
+ - Train/test splits for each task
162
+
163
+ ## Use Cases
164
+ 1. **Product Ranking**: Develop algorithms to rank relevant products higher in search results
165
+ 2. **Relevance Classification**: Build models to classify products as Exact, Substitute, Complement, or Irrelevant
166
+ 3. **Substitute Detection**: Identify substitute products for improved product recommendations
167
+ 4. **Semantic Search**: Train embedding models (like BERT, sentence-transformers) to:
168
+ - Capture semantic similarity between queries and products
169
+ - Handle long-tail queries with no exact keyword matches
170
+ - Understand product relationships across categories
171
+ - Example: Query "comfortable running shoes for marathon" can match with "Nike Air Zoom Alphafly NEXT%" even without exact keyword overlap
172
+
173
+ ## Citation
174
+ Originally sourced from ["Shopping Queries Dataset: A Large-Scale ESCI Benchmark for Improving Product Search"](https://github.com/amazon-science/esci-data?tab=readme-ov-file), this version is optimized for machine learning applications and semantic search research.
175
+ ```
176
+ @article{reddy2022shopping,
177
+ title={Shopping Queries Dataset: A Large-Scale {ESCI} Benchmark for Improving Product Search},
178
+ author={Chandan K. Reddy and Lluís Màrquez and Fran Valero and Nikhil Rao and Hugo Zaragoza and Sambaran Bandyopadhyay and Arnab Biswas and Anlu Xing and Karthik Subbian},
179
+ year={2022},
180
+ eprint={2206.06588},
181
+ archivePrefix={arXiv}
182
+ }
183
+ ```