import datasets import pandas as pd import json _DESCRIPTION = """ BIRD SQL Dataset with complete database content. Total rows: 366,787,649 Total chunks: 3660 """ class BirdSQLDatabase(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="database_content", description="Complete database content"), datasets.BuilderConfig(name="table_metadata", description="Table metadata"), ] DEFAULT_CONFIG_NAME = "database_content" def _info(self): if self.config.name == "database_content": features = datasets.Features({ "db_id": datasets.Value("string"), "table_name": datasets.Value("string"), "row_index": datasets.Value("int64"), "row_data": datasets.Value("string"), "split": datasets.Value("string") }) else: # table_metadata features = datasets.Features({ "db_id": datasets.Value("string"), "table_name": datasets.Value("string"), "columns": datasets.Value("string"), "column_types": datasets.Value("string"), "primary_keys": datasets.Value("string"), "total_rows": datasets.Value("int64"), "split": datasets.Value("string") }) return datasets.DatasetInfo(description=_DESCRIPTION, features=features) def _split_generators(self, dl_manager): if self.config.name == "database_content": manifest_file = dl_manager.download("database_content_manifest.json") with open(manifest_file) as f: manifest = json.load(f) chunk_files = [] for chunk_name in manifest["files"]: chunk_file = dl_manager.download(chunk_name) chunk_files.append(chunk_file) return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"chunk_files": chunk_files})] else: metadata_file = dl_manager.download("table_metadata.parquet") return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": metadata_file})] def _generate_examples(self, filepath=None, chunk_files=None): if self.config.name == "database_content": idx = 0 for chunk_file in chunk_files: df = pd.read_parquet(chunk_file) for _, row in df.iterrows(): yield idx, { "db_id": row["db_id"], "table_name": row["table_name"], "row_index": row["row_index"], "row_data": row["row_data"], "split": row["split"] } idx += 1 else: df = pd.read_parquet(filepath) for idx, row in df.iterrows(): yield idx, { "db_id": row["db_id"], "table_name": row["table_name"], "columns": row["columns"], "column_types": row["column_types"], "primary_keys": row["primary_keys"], "total_rows": row["total_rows"], "split": row["split"] }