File size: 4,205 Bytes
31e3a75
 
 
 
 
 
 
 
ba448d8
bf4bede
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31e3a75
bf4bede
f37af87
 
9b16974
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6ed1f7
 
c5a40f8
 
a6ed1f7
 
 
 
 
 
 
 
 
 
 
31e3a75
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
---
license: apache-2.0
task_categories:
- text-classification
- summarization
language:
- en
- de

dataset_info:
- config_name: whisper_v1
  features:
  - name: segment_index
    dtype: int32
  - name: start_time
    dtype: float32
  - name: end_time
    dtype: float32
  - name: transcribed_text
    dtype: string
  splits:
  - name: train
    num_bytes: 48411028
    num_examples: 780160
  download_size: 96617459
  dataset_size: 48411028
- config_name: whisper_v1_en
  features:
  - name: segment_index
    dtype: int32
  - name: start_time
    dtype: float32
  - name: end_time
    dtype: float32
  - name: transcribed_text
    dtype: string
  splits:
  - name: train
    num_bytes: 31843296
    num_examples: 563064
  download_size: 96617459
  dataset_size: 31843296
- config_name: whisper_v2
  features:
  - name: segment_index
    dtype: int32
  - name: start_time
    dtype: float32
  - name: end_time
    dtype: float32
  - name: transcribed_text
    dtype: string
  splits:
  - name: train
    num_bytes: 47409793
    num_examples: 761240
  download_size: 96617459
  dataset_size: 47409793
- config_name: whisper_v2_en
  features:
  - name: segment_index
    dtype: string
  - name: start_time
    dtype: float32
  - name: end_time
    dtype: float32
  - name: transcribed_text
    dtype: string
  splits:
  - name: train
    num_bytes: 32198972
    num_examples: 538990
  download_size: 96617459
  dataset_size: 32198972
- config_name: whisper_v3
  features:
  - name: segment_index
    dtype: string
  - name: start_time
    dtype: float32
  - name: end_time
    dtype: float32
  - name: transcribed_text
    dtype: string
  splits:
  - name: train
    num_bytes: 52528392
    num_examples: 923221
  download_size: 96617459
  dataset_size: 52528392
---

# SoccerNet-Echoes
Official repo for the paper: [SoccerNet-Echoes: A Soccer Game Audio Commentary Dataset](https://arxiv.org/abs/2405.07354).

## Dataset 
Each folder inside the **Dataset** directory is categorized by league, season, and game. Within these folders, JSON files contain the transcribed and translated game commentary.

```python


πŸ“‚ Dataset
β”œβ”€β”€ πŸ“ whisper_v1
β”‚   β”œβ”€β”€ πŸ† england_epl
β”‚   β”‚   β”œβ”€β”€ πŸ“… 2014-2015
β”‚   β”‚   β”‚   └── ⚽ 2016-03-02 - 23-00 Liverpool 3 - 0 Manchester City
β”‚   β”‚   β”‚       β”œβ”€β”€ ☁️ 1_asr.json
β”‚   β”‚   β”‚       └── ☁️ 2_asr.json
β”‚   β”‚   β”œβ”€β”€ πŸ“… 2015-2016
β”‚   β”‚   └── ...
β”‚   β”œβ”€β”€ πŸ† europe_uefa-champions-league
β”‚   └── ...
β”œβ”€β”€ πŸ“ whisper_v1_en
β”‚   └── ...
β”œβ”€β”€ πŸ“ whisper_v2
β”‚   └── ...
β”œβ”€β”€ πŸ“ whisper_v2_en
β”‚   └── ...
β”œβ”€β”€ πŸ“ whisper_v3
β”‚   └── ...

whisper_v1: Contains ASR from Whisper v1.
whisper_v1_en: English-translated datasets from Whisper v1.
whisper_v2:  Contains ASR from Whisper v2.
whisper_v2_en:  English-translated datasets from Whisper v2.
whisper_v3: Contains ASR from Whisper v3.
```

Each JSON file has the following format:
```python

{
  "segments": {
    segment index (int):[
      start time in second (float),
      end time in second (float),
      transcribed text from ASR
    ]
    ....
  }
}
```
The top-level object is named segments.
It contains an object where each key represents a unique segment index (e.g., "0", "1", "2", etc.).
Each segment index object has the following properties:
```python
start_time: A number representing the starting time of the segment in seconds.
end_time: A number representing the ending time of the segment in seconds.
text: A string containing the textual content of the commentary segment.
```



## Citation
Please cite our work if you use the SoccerNet-Echoes dataset:

<pre><code>
@misc{gautam2024soccernetechoes,
      title={SoccerNet-Echoes: A Soccer Game Audio Commentary Dataset}, 
      author={Sushant Gautam and Mehdi Houshmand Sarkhoosh and Jan Held and Cise Midoglu and Anthony Cioppa and Silvio Giancola and Vajira Thambawita and Michael A. Riegler and PΓ₯l Halvorsen and Mubarak Shah},
      year={2024},
      eprint={2405.07354},
      archivePrefix={arXiv},
      primaryClass={cs.SD},
      doi={10.48550/arXiv.2405.07354}
}
</code></pre>