# Copyright 2024 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ASR Dataset for various football leagues and seasons""" import json import os import datasets _CITATION = """\ @InProceedings{huggingface:dataset, title = {ASR Dataset for Football Leagues}, author={Your Name}, year={2024} } """ _DESCRIPTION = """\ This dataset contains Automatic Speech Recognition (ASR) data for various football leagues and seasons. The dataset includes ASR outputs from Whisper v1, v2, and v3, along with their English-translated versions. """ _HOMEPAGE = "https://github.com/SoccerNet/sn-echoes" _LICENSE = "Apache License 2.0" _URLS = { "whisper_v1": "whisper_v1/", "whisper_v1_en": "whisper_v1_en/", "whisper_v2": "whisper_v2/", "whisper_v2_en": "whisper_v2_en/", "whisper_v3": "whisper_v3/", } class FootballASRDataset(datasets.GeneratorBasedBuilder): """ASR Dataset for various football leagues and seasons""" VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="whisper_v1", version=VERSION, description="Contains ASR from Whisper v1"), datasets.BuilderConfig(name="whisper_v1_en", version=VERSION, description="English-translated datasets from Whisper v1"), datasets.BuilderConfig(name="whisper_v2", version=VERSION, description="Contains ASR from Whisper v2"), datasets.BuilderConfig(name="whisper_v2_en", version=VERSION, description="English-translated datasets from Whisper v2"), datasets.BuilderConfig(name="whisper_v3", version=VERSION, description="Contains ASR from Whisper v3"), ] DEFAULT_CONFIG_NAME = "whisper_v1" def _info(self): features = datasets.Features( { "segment_index": datasets.Value("string"), "start_time": datasets.Value("float"), "end_time": datasets.Value("float"), "transcribed_text": datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): urls = _URLS[self.config.name] data_dir = dl_manager.download_and_extract("https://codeload.github.com/SoccerNet/sn-echoes/zip/refs/heads/main") +"/sn-echoes-main/Dataset/" print("data_dir", { "data_dir": os.path.join(data_dir+ urls),}) version_name = urls.replace("/", "").replace("_", ".") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data_dir": os.path.join(data_dir+ urls), },) ] def _generate_examples(self, data_dir,): for root, _, files in os.walk(data_dir): for file in files: if file.endswith(".json"): with open(os.path.join(root, file), encoding="utf-8") as f: data = json.load(f) for segment_index, segment_data in data["segments"].items(): breakpoint() yield f"{file}_{segment_index}", { "segment_index": str(segment_index), "start_time": segment_data[0], "end_time": segment_data[1], "transcribed_text": segment_data[2], "game": file, }