# Copyright 2024 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import csv from PIL import Image import pandas as pd import datasets _CITATION = """\ @inproceedings{gautam2024kvasirvqa, title={Kvasir-VQA: A Text-Image Pair GI Tract Dataset}, author={Gautam, Sushant and Storås, Andrea and Midoglu, Cise and Hicks, Steven A. and Thambawita, Vajira and Halvorsen, Pål and Riegler, Michael A.}, booktitle={Proceedings of the First International Workshop on Vision-Language Models for Biomedical Applications (VLM4Bio '24)}, year={2024}, location={Melbourne, VIC, Australia}, publisher={ACM}, doi={10.1145/3689096.3689458} } """ _DESCRIPTION = """\ The Kvasir-VQA dataset is an extended dataset derived from the HyperKvasir and Kvasir-Instrument datasets, augmented with question-and-answer annotations. This dataset is designed to facilitate advanced machine learning tasks in gastrointestinal (GI) diagnostics, including image captioning, Visual Question Answering (VQA), and text-based generation of synthetic medical images. """ _HOMEPAGE = "https://datasets.simula.no/kvasir-vqa/" _LICENSE = "cc-by-nc-4.0" class KvasirVQADataset(datasets.GeneratorBasedBuilder): """Kvasir-VQA: A Text-Image Pair GI Tract Dataset""" VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig( name="kvasir_vqa", version=VERSION, description="Kvasir-VQA dataset containing text-image pairs with question-and-answer annotations"), ] DEFAULT_CONFIG_NAME = "kvasir_vqa" def _info(self): features = datasets.Features( { "image": datasets.Image(), "source": datasets.Value("string"), "question": datasets.Value("string"), "answer": datasets.Value("string"), "img_id": datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): data_dir = "." return [ datasets.SplitGenerator( name="raw_annotations", gen_kwargs={ "metadata_file": os.path.join(data_dir, "metadata.csv"), "image_dir": data_dir, }, ) ] def _generate_examples(self, metadata_file, image_dir): image_cache = {} df = pd.read_csv(metadata_file, encoding='utf-8') # shuffled_df = df.sample(frac=1, random_state=42).reset_index(drop=True) shuffled_df = df for idx, row in shuffled_df.iterrows(): image_file = row["file_name"] image_path = os.path.join(image_dir, image_file) if image_file not in image_cache: if os.path.exists(image_path): with open(image_path, "rb") as img_file: image_cache[image_file] = img_file.read() else: continue # Skip if the image file does not exist yield idx, { "image": image_cache[image_file], "source": row["source"], "question": row["question"], "answer": row["answer"], "img_id": image_file.replace(".jpg", "").replace("images/", ""), } # RUN: datasets-cli test HuggingFaceDataset-Binary.py --save_info --all_configs ## upload to huggingface, it will save as arrow # huggingface-cli upload SimulaMet-HOST/xxKvasir-VQA . . --repo-type dataset xxx ## then convert the arrow to parqueet # datasets-cli convert_to_parquet SimulaMet-HOST/xxKvasir-VQA # The file names were weird. I had to rename them to make it more readable. # cloned the repo to local and pushed again to huggingface