Datasets:

Languages:
English
ArXiv:
License:
File size: 2,364 Bytes
074df4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
license: apache-2.0
task_categories:
- text-to-image
language:
- en
pretty_name: ImageReward Dataset
size_categories:
- 1K<n<10K
---

# ImageRewardDB

## Dataset Description

- **Homepage: https://huggingface.co/datasets/wuyuchen/ImageRewardDB** 
- **Repository: TBD** 
- **Paper: TBD** 

### Dataset Summary

ImageRewardDB is a comprehensive text-to-image comparison dataset, focusing on text-to-image human preference. 
It consists of 137k pairs of expert comparisons, based on text prompts and corresponding model outputs from DiffusionDB. 
To build the ImageRewadDB, we design a pipeline tailored for it, establishing criteria for quantitative assessment and 
annotator training, optimizing labeling experience, and ensuring quality validation. And ImageRewardDB is now public available at 
[🤗 Hugging Face Dataset](https://huggingface.co/datasets/wuyuchen/ImageRewardDB).

### Languages

The text in the dataset is all in English.

### Four Subsets

Considering that the ImageRewardDB contains a large number of images, we provide four subsets in different scales to support different needs.

|Subset|Num of Images|Num of Prompts|Size|Image Directory|
|:--|--:|--:|--:|--:|
|ImageRewardDB 1K|TBD|1K|TBD|`images/`|
|ImageRewardDB 2K|TBD|2K|TBD|`images/`|
|ImageRewardDB 4K|TBD|4K|TBD|`images/`|
|ImageRewardDB 8K|TBD|8K|TBD|`images/`|

## Dataset Structure

### Data Instances

[More Information Needed]

### Data Fields

[More Information Needed]

### Data Splits

[More Information Needed]

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

[More Information Needed]

### Contributions

[More Information Needed]