File size: 2,364 Bytes
074df4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
---
license: apache-2.0
task_categories:
- text-to-image
language:
- en
pretty_name: ImageReward Dataset
size_categories:
- 1K<n<10K
---
# ImageRewardDB
## Dataset Description
- **Homepage: https://huggingface.co/datasets/wuyuchen/ImageRewardDB**
- **Repository: TBD**
- **Paper: TBD**
### Dataset Summary
ImageRewardDB is a comprehensive text-to-image comparison dataset, focusing on text-to-image human preference.
It consists of 137k pairs of expert comparisons, based on text prompts and corresponding model outputs from DiffusionDB.
To build the ImageRewadDB, we design a pipeline tailored for it, establishing criteria for quantitative assessment and
annotator training, optimizing labeling experience, and ensuring quality validation. And ImageRewardDB is now public available at
[🤗 Hugging Face Dataset](https://huggingface.co/datasets/wuyuchen/ImageRewardDB).
### Languages
The text in the dataset is all in English.
### Four Subsets
Considering that the ImageRewardDB contains a large number of images, we provide four subsets in different scales to support different needs.
|Subset|Num of Images|Num of Prompts|Size|Image Directory|
|:--|--:|--:|--:|--:|
|ImageRewardDB 1K|TBD|1K|TBD|`images/`|
|ImageRewardDB 2K|TBD|2K|TBD|`images/`|
|ImageRewardDB 4K|TBD|4K|TBD|`images/`|
|ImageRewardDB 8K|TBD|8K|TBD|`images/`|
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed] |