|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""The Loading scripts for ImageRewardDB.""" |
|
|
|
|
|
import pandas as pd |
|
import json |
|
import os |
|
|
|
import datasets |
|
from huggingface_hub import hf_hub_url |
|
|
|
|
|
|
|
_CITATION = """\ |
|
@misc{xu2023imagereward, |
|
title={ImageReward: Learning and Evaluating Human Preferences for Text-to-Image Generation}, |
|
author={Jiazheng Xu and Xiao Liu and Yuchen Wu and Yuxuan Tong and Qinkai Li and Ming Ding and Jie Tang and Yuxiao Dong}, |
|
year={2023}, |
|
eprint={2304.05977}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
ImageRewardDB is a comprehensive text-to-image comparison dataset, focusing on text-to-image human preference. \ |
|
It consists of 137k pairs of expert comparisons, based on text prompts and corresponding model outputs from DiffusionDB. \ |
|
To build the ImageRewadDB, we design a pipeline tailored for it, establishing criteria for quantitative assessment and \ |
|
annotator training, optimizing labeling experience, and ensuring quality validation. \ |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/THUDM/ImageRewardDB" |
|
_VERSION = datasets.Version("1.0.0") |
|
|
|
_LICENSE = "Apache License 2.0" |
|
|
|
|
|
|
|
_REPO_ID = "THUDM/ImageRewardDB" |
|
_URLS = {} |
|
_PART_IDS = { |
|
"train": 32, |
|
"validation": 2, |
|
"test": 2 |
|
} |
|
|
|
for name in list(_PART_IDS.keys()): |
|
_URLS[name] = {} |
|
for i in range(1, _PART_IDS[name]+1): |
|
_URLS[name][i] = hf_hub_url( |
|
_REPO_ID, |
|
filename=f"images/{name}/{name}_{i}.zip", |
|
repo_type="dataset" |
|
) |
|
_URLS[name]["metadata"] = hf_hub_url( |
|
_REPO_ID, |
|
filename=f"metadata-{name}.parquet", |
|
repo_type="dataset" |
|
) |
|
|
|
class ImageRewardDBConfig(datasets.BuilderConfig): |
|
'''BuilderConfig for ImageRewardDB''' |
|
|
|
def __init__(self, part_ids, **kwargs): |
|
'''BuilderConfig for ImageRewardDB |
|
Args: |
|
part_ids([int]): A list of part_ids. |
|
**kwargs: keyword arguments forwarded to super |
|
''' |
|
super(ImageRewardDBConfig, self).__init__(version=_VERSION, **kwargs) |
|
self.part_ids = part_ids |
|
|
|
class ImageRewardDB(datasets.GeneratorBasedBuilder): |
|
"""A dataset of 137k expert comparisons to date, demonstrating the text-to-image human preference.""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
BUILDER_CONFIGS = [] |
|
|
|
for num_k in [1,2,4,8]: |
|
part_ids = { |
|
"train": 4*num_k, |
|
"validation": 2, |
|
"test": 2 |
|
} |
|
BUILDER_CONFIGS.append( |
|
ImageRewardDBConfig(name=f"{num_k}k", part_ids=part_ids, description=f"This is a {num_k}k-scale ImageRewardDB") |
|
) |
|
BUILDER_CONFIGS.append( |
|
ImageRewardDBConfig(name=f"{num_k}k_group", part_ids=part_ids, description=f"This is a {num_k}k-scale group of ImageRewardDB") |
|
) |
|
|
|
DEFAULT_CONFIG_NAME = "8k" |
|
|
|
def _info(self): |
|
if "group" in self.config.name: |
|
features = datasets.Features( |
|
{ |
|
"prompt_id": datasets.Value("string"), |
|
"prompt": datasets.Value("string"), |
|
"classification": datasets.Value("string"), |
|
"image": datasets.Sequence(datasets.Image()), |
|
"rank": datasets.Sequence(datasets.Value("int8")), |
|
"overall_rating": datasets.Sequence(datasets.Value("int8")), |
|
"image_text_alignment_rating": datasets.Sequence(datasets.Value("int8")), |
|
"fidelity_rating": datasets.Sequence(datasets.Value("int8")) |
|
} |
|
) |
|
else: |
|
features = datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"prompt_id": datasets.Value("string"), |
|
"prompt": datasets.Value("string"), |
|
"classification": datasets.Value("string"), |
|
"image_amount_in_total": datasets.Value("int8"), |
|
"rank": datasets.Value("int8"), |
|
"overall_rating": datasets.Value("int8"), |
|
"image_text_alignment_rating": datasets.Value("int8"), |
|
"fidelity_rating": datasets.Value("int8") |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
|
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
|
|
|
|
|
|
|
|
data_dirs = {name: [] for name in list(_PART_IDS.keys())} |
|
json_paths = {name: [] for name in list(_PART_IDS.keys())} |
|
metadata_paths = {name: [] for name in list(_PART_IDS.keys())} |
|
for key in list(self.config.part_ids.keys()): |
|
for i in range(1, self.config.part_ids[key]+1): |
|
data_dir = dl_manager.download_and_extract(_URLS[key][i]) |
|
data_dirs[key].append(data_dir) |
|
json_paths[key].append(os.path.join(data_dir, f"{key}_{i}.json")) |
|
metadata_paths[key] = dl_manager.download(_URLS[key]["metadata"]) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"split": "train", |
|
"data_dirs": data_dirs["train"], |
|
"json_paths": json_paths["train"], |
|
"metadata_path": metadata_paths["train"] |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={ |
|
"split": "validation", |
|
"data_dirs": data_dirs["validation"], |
|
"json_paths": json_paths["validation"], |
|
"metadata_path": metadata_paths["validation"] |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"split": "test", |
|
"data_dirs": data_dirs["test"], |
|
"json_paths": json_paths["test"], |
|
"metadata_path": metadata_paths["test"] |
|
}, |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, split, data_dirs, json_paths, metadata_path): |
|
|
|
|
|
num_data_dirs = len(data_dirs) |
|
assert num_data_dirs == len(json_paths) |
|
|
|
|
|
|
|
for index, json_path in enumerate(json_paths): |
|
json_data = json.load(open(json_path, "r", encoding="utf-8")) |
|
if "group" in self.config.name: |
|
group_num = 0 |
|
image_path = [] |
|
rank = [] |
|
overall_rating, image_text_alignment_rating, fidelity_rating = [], [], [] |
|
for sample in json_data: |
|
if group_num == 0: |
|
image_path.clear() |
|
rank.clear() |
|
overall_rating.clear() |
|
image_text_alignment_rating.clear() |
|
fidelity_rating.clear() |
|
prompt_id = sample["prompt_id"] |
|
prompt = sample["prompt"] |
|
classification = sample["classification"] |
|
image_amount_in_total = sample["image_amount_in_total"] |
|
image_path.append(sample["image_path"]) |
|
rank.append(sample["rank"]) |
|
overall_rating.append(sample["overall_rating"]) |
|
image_text_alignment_rating.append(sample["image_text_alignment_rating"]) |
|
fidelity_rating.append(sample["fidelity_rating"]) |
|
group_num += 1 |
|
if group_num == image_amount_in_total: |
|
group_num = 0 |
|
yield prompt_id, ({ |
|
"prompt_id": prompt_id, |
|
"prompt": prompt, |
|
"classification": classification, |
|
"image": [{ |
|
"path": image_path[idx], |
|
"bytes": open(image_path[idx], "rb").read() |
|
} for idx in range(image_amount_in_total)], |
|
"rank": rank, |
|
"overall_rating": overall_rating, |
|
"image_text_alignment_rating": image_text_alignment_rating, |
|
"fidelity_rating": fidelity_rating, |
|
}) |
|
else: |
|
for example in json_data: |
|
image_path = os.path.join(data_dirs[index], str(example["image_path"]).split("/")[-1]) |
|
yield example["image_path"], { |
|
"image": { |
|
"path": image_path, |
|
"bytes": open(image_path, "rb").read() |
|
}, |
|
"prompt_id": example["prompt_id"], |
|
"prompt": example["prompt"], |
|
"classification": example["classification"], |
|
"image_amount_in_total": example["image_amount_in_total"], |
|
"rank": example["rank"], |
|
"overall_rating": example["overall_rating"], |
|
"image_text_alignment_rating": example["image_text_alignment_rating"], |
|
"fidelity_rating": example["fidelity_rating"] |
|
} |