Datasets:

Languages:
English
ArXiv:
License:
wuyuchen commited on
Commit
659a32f
Β·
1 Parent(s): 3b39000

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -9
README.md CHANGED
@@ -32,27 +32,107 @@ The text in the dataset is all in English.
32
  ### Four Subsets
33
 
34
  Considering that the ImageRewardDB contains a large number of images, we provide four subsets in different scales to support different needs.
 
 
35
 
36
- |Subset|Num of Images|Num of Prompts|Size|Image Directory|
37
- |:--|--:|--:|--:|--:|
38
- |ImageRewardDB 1K|TBD|1K|TBD|`images/`|
39
- |ImageRewardDB 2K|TBD|2K|TBD|`images/`|
40
- |ImageRewardDB 4K|TBD|4K|TBD|`images/`|
41
- |ImageRewardDB 8K|TBD|8K|TBD|`images/`|
42
 
43
  ## Dataset Structure
44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
  ### Data Instances
46
 
47
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
  ### Data Fields
50
 
51
- [More Information Needed]
 
 
 
 
 
 
 
 
52
 
53
  ### Data Splits
54
 
55
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
 
57
  ## Dataset Creation
58
 
 
32
  ### Four Subsets
33
 
34
  Considering that the ImageRewardDB contains a large number of images, we provide four subsets in different scales to support different needs.
35
+ For all subsets, the validation and test splits remain the same. The validation split(1.08GB) contains 412 prompts and 3.2K images and
36
+ the test(1.14GB) split cotains 466 prompts and 3.4K images. The information of the train split in different scales is as following:
37
 
38
+ |Subset|Num of Images|Num of Prompts|Size|
39
+ |:--|--:|--:|--:|
40
+ |ImageRewardDB 1K|7.8K|1K|2.7GB|
41
+ |ImageRewardDB 2K|15.6K|2K|5.4GB|
42
+ |ImageRewardDB 4K|31.4K|4K|10.6GB|
43
+ |ImageRewardDB 8K|62.6K|8K|20.6GB|
44
 
45
  ## Dataset Structure
46
 
47
+ All the data in this repository is stored in a well organized way. The 62.6K images in ImageRewardDB are split into several folders,
48
+ stored in corresponding directories under "./images" according to its split. Each folder contains around 500 prompts, its corresponding
49
+ images, and a JSON file. The JSON file links the image with its corresponding prompt and annotation.
50
+ The file structure is as following:
51
+ ```
52
+ # ImageRewardDB
53
+ ./
54
+ β”œβ”€β”€ images
55
+ β”‚Β Β  β”œβ”€β”€ train
56
+ β”‚Β Β  β”‚Β Β  β”œβ”€β”€ train_1
57
+ β”‚Β Β  β”‚Β Β  β”‚ β”œβ”€β”€ 0a1ed3a5-04f6-4a1b-aee6-d584e7c8ed9c.webp
58
+ β”‚Β Β  β”‚Β Β  β”‚ β”œβ”€β”€ 0a58cfa8-ff61-4d31-9757-27322aec3aaf.webp
59
+ β”‚Β Β  β”‚Β Β  β”‚ β”œβ”€β”€ [...]
60
+ β”‚Β Β  β”‚Β Β  β”‚ └── train_1.json
61
+ β”‚Β Β  β”‚Β Β  β”œβ”€β”€ train_2
62
+ β”‚Β Β  β”‚Β Β  β”œβ”€β”€ train_3
63
+ β”‚Β Β  β”‚Β Β  β”œβ”€β”€ [...]
64
+ β”‚Β Β  β”‚Β Β  └── train_32
65
+ β”‚Β Β  β”œβ”€β”€ validation
66
+ β”‚ β”‚ └── [...]
67
+ β”‚Β Β  └── test
68
+ β”‚ └── [...]
69
+ β”œβ”€β”€ metadata-train.parquet
70
+ β”œβ”€β”€ metadata-validation.parquet
71
+ └── metadata-test.parquet
72
+ ```
73
+ The sub-folders have the name of <split_name>_<part_id>, and the JSON file have the same name as the sub-folder.
74
+ Each image is a lossless WebP file, and has a unique name generated by [UUID](https://en.wikipedia.org/wiki/Universally_unique_identifier).
75
+
76
  ### Data Instances
77
 
78
+ For instance, below is the image of `1b4b2d61-89c2-4091-a1c0-f547ad5065cb.webp` and its information in train_1.json.
79
+
80
+ ```json
81
+ {
82
+ "image_path": "images/train/train_1/0280642d-f69f-41d1-8598-5a44e296aa8b.webp",
83
+ "prompt_id": "000864-0061",
84
+ "prompt": "painting of a holy woman, decorated, intricate, elegant, highly detailed, digital painting, artstation, concept art, smooth, sharp focus, illustration, art by artgerm and greg rutkowski and alphonse mucha, 8 k ",
85
+ "classification": "People",
86
+ "image_amount_in_total": 9,
87
+ "rank": 5,
88
+ "overall_rating": 4,
89
+ "image_text_alignment_rating": 3,
90
+ "fidelity_rating": 4
91
+ }
92
+ ```
93
 
94
  ### Data Fields
95
 
96
+ * image: The image object
97
+ * prompt_id: The id of the corresponding prompt
98
+ * prompt: The text of the corresponding prompt
99
+ * classification: The classification of the corresponding prompt
100
+ * image_amount_in_total: Total amount of images related to the prompt
101
+ * rank: The relative rank of the image in all related images
102
+ * overall_rating: The overall score of this image
103
+ * image_text_alignment_rating: The score of how well the generated image matchs the given text
104
+ * fidelity_rating: The score of whether the output image is true to the shape and characteristics that the object should have
105
 
106
  ### Data Splits
107
 
108
+ As we mentioned above, all scales of the subsets we provided have three spilts of "train", "validtion", and "test".
109
+ And all the subsets share the same validation and test splits.
110
+
111
+ ### Dataset Metadata
112
+
113
+ We also include three metadata tables `metadata-train.parquet`, `metadata-validation.parquet`, and `metadata-test.parquet` to
114
+ help you access and comprehend ImageRewardDB without downloading the Zip files.
115
+
116
+ All the tables share the same schema, and each row refers to an image. The schema is shown below,
117
+ and actually the JSON files we mentioned above share the same schema:
118
+
119
+ |Column|Type|Description|
120
+ |:---|:---|:---|
121
+ |`image_path`|`string`|The relative path of the image in the repository.|
122
+ |`prompt_id`|`string`|The id of the corresponding prompt.|
123
+ |`prompt`|`string`|The text of the corresponding prompt.|
124
+ |`classification`|`string`| The classification of the corresponding prompt.|
125
+ |`image_amount_in_total`|`int`| Total amount of images related to the prompt.|
126
+ |`rank`|`int`| The relative rank of the image in all related images.|
127
+ |`overall_rating`|`int`| The overall score of this image.
128
+ |`image_text_alignment_rating`|`int`|The score of how well the generated image matchs the given text.|
129
+ |`fidelity_rating`|`int`|The score of whether the output image is true to the shape and characteristics that the object should have.|
130
+
131
+ Below are an example row from metadata-train.parquet.
132
+
133
+ |image_path|prompt_id|prompt|classification|image_amount_in_total|rank|overall_rating|image_text_alignment_rating|fidelity_rating|
134
+ |:---|:---|:---|:---|:---|:---|:---|:---|:---|
135
+ |images/train/train_1/1b4b2d61-89c2-4091-a1c0-f547ad5065cb.webp|001324-0093|a magical forest that separates the good world from the dark world, fantasy art by greg rutkowski, loish, rhads, ferdinand knab, makoto shinkai and lois van baarle, ilya kuvshinov, rossdraws, tom bagshaw, global illumination, radiant light, detailed and intricate environment|Outdoor Scenes|9|3|6|6|6|
136
 
137
  ## Dataset Creation
138