Datasets:

Modalities:
Text
ArXiv:
Libraries:
Datasets
File size: 32,915 Bytes
175e6ae
f61f6c2
 
 
 
 
175e6ae
 
 
 
 
 
 
 
f61f6c2
29ee647
f61f6c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29ee647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47ac8bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72ce14e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc4e964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad68a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92b6c5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8e164b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
daa2c2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e42ab2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff8e5ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eaa16f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95083b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
850fa26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01117d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f662137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7eb05f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9ece0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ba139b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb4961b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1c571e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9726770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08db517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54c203e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfdf754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
679e6f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b61c7c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
707be9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac0b135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3176ae5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f572ee5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cb9eb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f61f6c2
 
 
 
 
29ee647
 
 
 
47ac8bb
 
 
 
72ce14e
 
 
 
cc4e964
 
 
 
ad68a11
 
 
 
92b6c5f
 
 
 
b8e164b
 
 
 
daa2c2c
 
 
 
e42ab2e
 
 
 
ff8e5ca
 
 
 
eaa16f1
 
 
 
95083b3
 
 
 
850fa26
 
 
 
01117d5
 
 
 
f662137
 
 
 
b7eb05f
 
 
 
a9ece0f
 
 
 
1ba139b
 
 
 
eb4961b
 
 
 
b1c571e
 
 
 
9726770
 
 
 
08db517
 
 
 
54c203e
 
 
 
bfdf754
 
 
 
679e6f7
 
 
 
b61c7c7
 
 
 
707be9b
 
 
 
ac0b135
 
 
 
3176ae5
 
 
 
f572ee5
 
 
 
5cb9eb9
 
 
 
175e6ae
 
 
 
7956e94
175e6ae
10e175d
175e6ae
7956e94
175e6ae
c2a61c1
7956e94
c2a61c1
175e6ae
 
 
 
 
 
 
7956e94
 
 
175e6ae
 
 
 
7956e94
 
 
 
 
 
 
 
 
 
 
175e6ae
 
 
7956e94
175e6ae
 
 
7956e94
 
 
 
175e6ae
 
 
 
 
 
 
 
 
 
 
 
 
 
c2a61c1
7956e94
 
 
c2a61c1
 
7956e94
 
c2a61c1
7956e94
 
 
 
 
 
 
 
 
c2a61c1
 
 
7956e94
175e6ae
 
 
 
 
c2a61c1
175e6ae
 
7956e94
175e6ae
c2a61c1
 
7956e94
 
175e6ae
7956e94
175e6ae
 
7956e94
c2a61c1
 
175e6ae
 
c2a61c1
 
 
 
 
175e6ae
 
 
 
7956e94
c2a61c1
7956e94
c2a61c1
7956e94
 
c2a61c1
 
 
7956e94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
---
language:
- en
- zh
size_categories:
- 1K<n<10K
task_categories:
- question-answering
- text-generation
- summarization
- conversational
- text-classification
tags:
- Long Context
dataset_info:
- config_name: 2wikimqa
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 5982997
    num_examples: 200
  download_size: 3595131
  dataset_size: 5982997
- config_name: 2wikimqa_e
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 11331920
    num_examples: 300
  download_size: 6782587
  dataset_size: 11331920
- config_name: dureader
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 8212951
    num_examples: 200
  download_size: 5167177
  dataset_size: 8212951
- config_name: gov_report
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 11593569
    num_examples: 200
  download_size: 5504355
  dataset_size: 11593569
- config_name: gov_report_e
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 14263436
    num_examples: 300
  download_size: 6669354
  dataset_size: 14263436
- config_name: hotpotqa
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 11379153
    num_examples: 200
  download_size: 6626936
  dataset_size: 11379153
- config_name: hotpotqa_e
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 12324268
    num_examples: 300
  download_size: 7196922
  dataset_size: 12324268
- config_name: lcc
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 6878988
    num_examples: 500
  download_size: 2348393
  dataset_size: 6878988
- config_name: lcc_e
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 17755543
    num_examples: 300
  download_size: 5530346
  dataset_size: 17755543
- config_name: lsht
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 13005634
    num_examples: 200
  download_size: 8143066
  dataset_size: 13005634
- config_name: multi_news
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 2715969
    num_examples: 200
  download_size: 1501391
  dataset_size: 2715969
- config_name: multi_news_e
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 11308405
    num_examples: 294
  download_size: 5833166
  dataset_size: 11308405
- config_name: multifieldqa_en
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 4427988
    num_examples: 150
  download_size: 1850093
  dataset_size: 4427988
- config_name: multifieldqa_en_e
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 4428288
    num_examples: 150
  download_size: 1829910
  dataset_size: 4428288
- config_name: multifieldqa_zh
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 3541307
    num_examples: 200
  download_size: 1447281
  dataset_size: 3541307
- config_name: musique
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 13965034
    num_examples: 200
  download_size: 8130878
  dataset_size: 13965034
- config_name: narrativeqa
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 21682299
    num_examples: 200
  download_size: 1308980
  dataset_size: 21682299
- config_name: passage_count
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 13417957
    num_examples: 200
  download_size: 4953911
  dataset_size: 13417957
- config_name: passage_count_e
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 11123592
    num_examples: 300
  download_size: 3868032
  dataset_size: 11123592
- config_name: passage_retrieval_en
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 11234534
    num_examples: 200
  download_size: 7041865
  dataset_size: 11234534
- config_name: passage_retrieval_en_e
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 11108473
    num_examples: 300
  download_size: 6962499
  dataset_size: 11108473
- config_name: passage_retrieval_zh
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 3660028
    num_examples: 200
  download_size: 2683824
  dataset_size: 3660028
- config_name: qasper
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 4792612
    num_examples: 200
  download_size: 1869662
  dataset_size: 4792612
- config_name: qasper_e
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 6856180
    num_examples: 224
  download_size: 2012933
  dataset_size: 6856180
- config_name: qmsum
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 11619927
    num_examples: 200
  download_size: 973894
  dataset_size: 11619927
- config_name: repobench-p
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 24155458
    num_examples: 500
  download_size: 7757199
  dataset_size: 24155458
- config_name: repobench-p_e
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 20378217
    num_examples: 300
  download_size: 6633193
  dataset_size: 20378217
- config_name: samsum
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 6968716
    num_examples: 200
  download_size: 4115281
  dataset_size: 6968716
- config_name: samsum_e
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 10304915
    num_examples: 300
  download_size: 6087327
  dataset_size: 10304915
- config_name: trec
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 6200475
    num_examples: 200
  download_size: 2676502
  dataset_size: 6200475
- config_name: trec_e
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 11182248
    num_examples: 300
  download_size: 4866603
  dataset_size: 11182248
- config_name: triviaqa
  features:
  - name: input
    dtype: string
  - name: context
    dtype: string
  - name: answers
    list: string
  - name: length
    dtype: int32
  - name: dataset
    dtype: string
  - name: language
    dtype: string
  - name: all_classes
    list: string
  - name: _id
    dtype: string
  splits:
  - name: test
    num_bytes: 10153425
    num_examples: 200
  download_size: 6295606
  dataset_size: 10153425
configs:
- config_name: 2wikimqa
  data_files:
  - split: test
    path: 2wikimqa/test-*
- config_name: 2wikimqa_e
  data_files:
  - split: test
    path: 2wikimqa_e/test-*
- config_name: dureader
  data_files:
  - split: test
    path: dureader/test-*
- config_name: gov_report
  data_files:
  - split: test
    path: gov_report/test-*
- config_name: gov_report_e
  data_files:
  - split: test
    path: gov_report_e/test-*
- config_name: hotpotqa
  data_files:
  - split: test
    path: hotpotqa/test-*
- config_name: hotpotqa_e
  data_files:
  - split: test
    path: hotpotqa_e/test-*
- config_name: lcc
  data_files:
  - split: test
    path: lcc/test-*
- config_name: lcc_e
  data_files:
  - split: test
    path: lcc_e/test-*
- config_name: lsht
  data_files:
  - split: test
    path: lsht/test-*
- config_name: multi_news
  data_files:
  - split: test
    path: multi_news/test-*
- config_name: multi_news_e
  data_files:
  - split: test
    path: multi_news_e/test-*
- config_name: multifieldqa_en
  data_files:
  - split: test
    path: multifieldqa_en/test-*
- config_name: multifieldqa_en_e
  data_files:
  - split: test
    path: multifieldqa_en_e/test-*
- config_name: multifieldqa_zh
  data_files:
  - split: test
    path: multifieldqa_zh/test-*
- config_name: musique
  data_files:
  - split: test
    path: musique/test-*
- config_name: narrativeqa
  data_files:
  - split: test
    path: narrativeqa/test-*
- config_name: passage_count
  data_files:
  - split: test
    path: passage_count/test-*
- config_name: passage_count_e
  data_files:
  - split: test
    path: passage_count_e/test-*
- config_name: passage_retrieval_en
  data_files:
  - split: test
    path: passage_retrieval_en/test-*
- config_name: passage_retrieval_en_e
  data_files:
  - split: test
    path: passage_retrieval_en_e/test-*
- config_name: passage_retrieval_zh
  data_files:
  - split: test
    path: passage_retrieval_zh/test-*
- config_name: qasper
  data_files:
  - split: test
    path: qasper/test-*
- config_name: qasper_e
  data_files:
  - split: test
    path: qasper_e/test-*
- config_name: qmsum
  data_files:
  - split: test
    path: qmsum/test-*
- config_name: repobench-p
  data_files:
  - split: test
    path: repobench-p/test-*
- config_name: repobench-p_e
  data_files:
  - split: test
    path: repobench-p_e/test-*
- config_name: samsum
  data_files:
  - split: test
    path: samsum/test-*
- config_name: samsum_e
  data_files:
  - split: test
    path: samsum_e/test-*
- config_name: trec
  data_files:
  - split: test
    path: trec/test-*
- config_name: trec_e
  data_files:
  - split: test
    path: trec_e/test-*
- config_name: triviaqa
  data_files:
  - split: test
    path: triviaqa/test-*
---

# Introduction

**LongBench** is the first benchmark for bilingual, multitask, and comprehensive assessment of **long context understanding** capabilities of large language models. LongBench includes different languages (Chinese and English) to provide a more comprehensive evaluation of the large models' multilingual capabilities on long contexts. In addition, LongBench is composed of six major categories and twenty one different tasks, covering key long-text application scenarios such as single-document QA, multi-document QA, summarization, few-shot learning, synthetic tasks and code completion.

We are fully aware of the potentially high costs involved in the model evaluation process, especially in the context of long context scenarios (such as manual annotation costs or API call costs). Therefore, we adopt a fully automated evaluation method, aimed at measuring and evaluating the model's ability to understand long contexts at the lowest cost.

LongBench includes 14 English tasks, 5 Chinese tasks, and 2 code tasks, with the average length of most tasks ranging from 5k to 15k, and a total of 4,750 test data. For detailed statistics and construction methods of LongBench tasks, please refer [here](task.md). In addition, we provide LongBench-E, a test set with a more uniform length distribution constructed by uniform sampling, with comparable amounts of data in the 0-4k, 4k-8k, and 8k+ length intervals to provide an analysis of the model's performance variations at different input lengths.

Github Repo for LongBench: https://github.com/THUDM/LongBench
Arxiv Paper for LongBench: https://arxiv.org/pdf/2308.14508.pdf

# How to use it?

#### Loading Data

```python
from datasets import load_dataset

datasets = ["narrativeqa", "qasper", "multifieldqa_en", "multifieldqa_zh", "hotpotqa", "2wikimqa", "musique", \
            "dureader", "gov_report", "qmsum", "multi_news", "vcsum", "trec", "triviaqa", "samsum", "lsht", \
            "passage_count", "passage_retrieval_en", "passage_retrieval_zh", "lcc", "repobench-p"]

for dataset in datasets:
    data = load_dataset('THUDM/LongBench', dataset, split='test')
```
Similarly, you can load the **LongBench-E** data
```python
from datasets import load_dataset

datasets = ["qasper", "multifieldqa_en", "hotpotqa", "2wikimqa", "gov_report", "multi_news", "trec", \
            "triviaqa", "samsum", "passage_count", "passage_retrieval_en", "lcc", "repobench-p"]

for dataset in datasets:
    data = load_dataset('THUDM/LongBench', f"{dataset}_e", split='test')
```
Alternatively, you can download the folder from [this link](https://huggingface.co/datasets/THUDM/LongBench/resolve/main/data.zip) to load the data.

#### Data Format

All data in **LongBench** (LongBench-E) are standardized to the following format:

```json
{
    "input": "The input/command for the task, usually short, such as questions in QA, queries in Few-shot tasks, etc",
    "context": "The long context required for the task, such as documents, cross-file code, few-shot examples in Few-shot tasks",
    "answers": "A List of all true answers",
    "length": "Total length of the first three items (counted in characters for Chinese and words for English)",
    "dataset": "The name of the dataset to which this piece of data belongs",
    "language": "The language of this piece of data",
    "all_classes": "All categories in classification tasks, null for non-classification tasks",
    "_id": "Random id for each piece of data"
}
```

#### Evaluation

This repository provides data download for LongBench. If you wish to use this dataset for automated evaluation, please refer to our [github](https://github.com/THUDM/LongBench).

# Task statistics

| Task          | Task Type | Eval metric |     Avg len                            |Language | \#Sample |
| :-------- | :-----------:| :-----------: |:-------: | :-----------: |:--------: |
| HotpotQA   | Multi-doc QA | F1                        |9,151                           |EN                           |200                           |
| 2WikiMultihopQA| Multi-doc QA | F1                        |4,887                           |EN                           |200                           |
| MuSiQue| Multi-doc QA | F1                        |11,214                           |EN                           |200                           |
| DuReader| Multi-doc QA | Rouge-L                 |15,768                           |ZH                           |200                           |
| MultiFieldQA-en| Single-doc QA | F1                        |4,559                           |EN                           |150                           |
| MultiFieldQA-zh| Single-doc QA | F1                        |6,701                           |ZH                           |200                           |
| NarrativeQA| Single-doc QA | F1                        |18,409                           |EN                           |200                           |
| Qasper| Single-doc QA | F1                        |3,619                           |EN                           |200                           |
| GovReport| Summarization | Rouge-L                 |8,734                           |EN                           |200                           |
| QMSum| Summarization | Rouge-L                 |10,614                           |EN                           |200                           |
| MultiNews| Summarization  | Rouge-L                 |2,113                           |EN                          |200                           |
| VCSUM| Summarization | Rouge-L                 |15,380                           |ZH                           |200                           |
| TriviaQA| Few shot  | F1                        |8,209                           |EN                           |200                           |
| SAMSum| Few shot | Rouge-L                        |6,258                           |EN                           |200                           |
| TREC| Few shot | Accuracy                |5,177                           |EN                           |200                           |
| LSHT| Few shot | Accuracy                |22,337                           |ZH                           |200                           |
| PassageRetrieval-en| Synthetic | Accuracy                |9,289                           |EN                           |200                           |
| PassageCount| Synthetic | Accuracy                |11,141                           |EN                           |200  |
| PassageRetrieval-zh | Synthetic | Accuracy                |6,745                           |ZH                           |200                           |
| LCC| Code | Edit Sim              |1,235                           |Python/C#/Java                           |500                           |
| RepoBench-P| Code | Edit Sim                |4,206                           |Python/Java                           |500                           |

> Note: In order to avoid discrepancies caused by different tokenizers, we use the word count (using Python's split function) to calculate the average length of English datasets and code datasets, and use the character count to calculate the average length of Chinese datasets.

# Task description
| Task              | Task Description                                            |
| :---------------- | :----------------------------------------------------------- |
| HotpotQA          | Answer related questions based on multiple given documents   |
| 2WikiMultihopQA   | Answer related questions based on multiple given documents   |
| MuSiQue           | Answer related questions based on multiple given documents   |
| DuReader          | Answer related Chinese questions based on multiple retrieved documents |
| MultiFieldQA-en   | Answer English questions based on a long article, which comes from a relatively diverse field |
| MultiFieldQA-zh   | Answer Chinese questions based on a long article, which comes from a relatively diverse field |
| NarrativeQA       | Answer questions based on stories or scripts, including understanding of important elements such as characters, plots, themes, etc. |
| Qasper            | Answer questions based on a NLP research paper, questions proposed and answered by NLP practitioners |
| GovReport         | A summarization task that requires summarizing government work reports |
| MultiNews             | A multi-doc summarization that requires summarizing over multiple news   |
| QMSum             | A summarization task that requires summarizing meeting records based on user queries |
| VCSUM             | A summarization task that requires summarizing Chinese meeting records |
| SAMSum            | A dialogue summarization task, providing several few-shot examples                    |
| TriviaQA          | Single document question answering task, providing several few-shot examples |
| NQ                | Single document question answering task, providing several few-shot examples |
| TREC              | A classification task that requires categorizing questions, includes 50 categories in total |
| LSHT              | A Chinese classification task that requires categorizing news, includes 24 categories in total |
| PassageRetrieval-en | Given 30 English Wikipedia paragraphs, determine which paragraph the given summary corresponds to |
| PassageCount | Determine the total number of different paragraphs in a given repetitive article |
| PassageRetrieval-zh | Given several Chinese paragraphs from the C4 data set, determine which paragraph the given abstract corresponds to |
| LCC               | Given a long piece of code, predict the next line of code |
| RepoBench-P       | Given code in multiple files within a GitHub repository (including cross-file dependencies), predict the next line of code |

# Task construction
> Note: For all tasks constructed from existing datasets, we use data from the validation or test set of the existing dataset (except for VCSUM).

- The tasks of [HotpotQA](https://hotpotqa.github.io/), [2WikiMultihopQA](https://aclanthology.org/2020.coling-main.580/), [MuSiQue](https://arxiv.org/abs/2108.00573), and [DuReader](https://github.com/baidu/DuReader) are built based on the original datasets and processed to be suitable for long context evaluation. Specifically, for questions in the validation set, we select the evidence passage that contains the answer and several distracting articles. These articles together with the original question constitute the input of the tasks.
- The tasks of MultiFiedQA-zh and MultiFieldQA-en consist of long artical data from about 10 sources, including Latex papers, judicial documents, government work reports, and PDF documents indexed by Google. For each long artical, we invite several PhD and master students to annotate, i.e., to ask questions based on the long artical and give the correct answers. To better automate evaluation, we ask the annotators to propose questions with definitive answers as much as possible.
- The tasks of [NarrativeQA](https://arxiv.org/pdf/1712.07040.pdf), [Qasper](https://arxiv.org/pdf/2105.03011.pdf), [GovReport](https://arxiv.org/pdf/2104.02112.pdf), [QMSum](https://arxiv.org/pdf/2104.05938.pdf) and [MultiNews](https://aclanthology.org/P19-1102.pdf) directly use the data provided by the original papers. In the specific construction, we use the template provided by [ZeroSCROLLS](https://www.zero.scrolls-benchmark.com/) to convert the corresponding data into pure text input.
- The [VCSUM](https://arxiv.org/abs/2305.05280) task is built based on the original dataset, and we design a corresponding template to convert the corresponding data into pure text input.
- The [TriviaQA](https://nlp.cs.washington.edu/triviaqa/) task is constructed in the manner of [CoLT5](https://arxiv.org/abs/2303.09752), which provides several examples of question and answering based on documents, and requires the language model to answer related questions based on new documents.
- The tasks of [SAMSum](https://aclanthology.org/D19-5409.pdf), [TREC](https://aclanthology.org/C02-1150.pdf) and [LSHT](http://tcci.ccf.org.cn/conference/2014/dldoc/evatask6.pdf) are built based on the original datasets. For each question in the validation set, we sample several data from the training set to form few-shot examples. These examples together with the questions in the validation set constitute the input for this task.
- The PassageRetrieval-en task is constructed based on English Wikipedia. For each piece of data, we randomly sample 30 paragraphs from English Wikipedia and select one for summarization (using GPT-3.5-Turbo). This task requires the model to give the original paragraph name to which the summary corresponds.
- The PassageCount task is constructed based on the English wiki. For each piece of data, we randomly sample several passages from English Wikipedia, repeat each paragraph at random several times, and finally shuffle the paragraphs. This task requires the model to determine the total number of different paragraphs in the given context.
- The PasskeyRetrieval-zh task is constructed based on [C4](https://arxiv.org/abs/1910.10683). For each piece of data, we randomly sample several Chinese paragraphs from C4 and select one of them for summarization (using GPT-3.5-Turbo). This task requires the model to give the original paragraph name to which the summary corresponds.
- For the [LCC](https://arxiv.org/abs/2306.14893) task, we sample from the original code completion dataset. In the [RepoBench-P](https://arxiv.org/abs/2306.03091) task, we select the most challenging XF-F (Cross-File-First) setting from the original dataset and refer to the Oracle-Filled scenario in the paper. For each original piece of data, we randomly extract multiple cross-file code snippets, including the gold cross-file code snippet, and concatenate them as input, requiring the model to effectively use cross-file code for completion.

# LongBench-E statistics
| Task          | Task Type  |   \#data in 0-4k  |     \#data in 4-8k                    | \#data in 8k+|
| :--------- | :-----------:| :-----------: |:---------: | :-------------: |
| HotpotQA   | Multi-doc QA       | 100                        |100                           |100   |
| 2WikiMultihopQA| Multi-doc QA | 100                        |100                           |100     |
| MultiFieldQA-en| Single-doc QA | 67                        |70                           |13      |
| Qasper| Single-doc QA    | 100                        |100                           |24      |
| GovReport| Summarization | 100                 |100                           |100        |
| MultiNews| Summarization | 100                 |100                           |94            |
| TriviaQA| Few shot  | 100                        |100                           |100 |
| SAMSum| Few shot | 100                        |100                           |100   |
| TREC| Few shot | 100                |100                           |100     |
| PassageRetrieval-en| Synthetic | 100                |100                           |100     |
| PassageCount| Synthetic | 100                |100                           |100   |
| LCC| Code | 100              |100                           |100  |
| RepoBench-P| Code | 100               |100                          |100  |

# Citation
```
@misc{bai2023longbench,
      title={LongBench: A Bilingual, Multitask Benchmark for Long Context Understanding}, 
      author={Yushi Bai and Xin Lv and Jiajie Zhang and Hongchang Lyu and Jiankai Tang and Zhidian Huang and Zhengxiao Du and Xiao Liu and Aohan Zeng and Lei Hou and Yuxiao Dong and Jie Tang and Juanzi Li},
      year={2023},
      eprint={2308.14508},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```