Datasets:

Modalities:
Text
Languages:
code
Size:
< 1K
Libraries:
Datasets
License:
loubnabnl HF staff commited on
Commit
2c29590
·
1 Parent(s): e2208f5
README.md CHANGED
@@ -1,3 +1,74 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators: []
3
+ language_creators:
4
+ - crowdsourced
5
+ - expert-generated
6
+ language:
7
+ - code
8
+ license:
9
+ - apache-2.0
10
+ multilinguality:
11
+ - multilingual
12
+ pretty_name: HumanEval-X
13
+ size_categories:
14
+ - unknown
15
+ source_datasets: []
16
+ task_categories:
17
+ - sequence-modeling
18
+ task_ids:
19
+ - language-modeling
20
  ---
21
+
22
+ # HumanEval-X
23
+
24
+ ## Dataset Description
25
+ [HumanEval-X](https://github.com/THUDM/CodeGeeX) is a benchmark for the evaluation of the multilingual ability of code generative models. It consists of 820 high-quality human-crafted data samples (each with test cases) in Python, C++, Java, JavaScript, and Go, and can be used for various tasks.
26
+
27
+ The dataset is currently used for two tasks: code generation and code translation. For code generation, the model uses declaration and docstring as input to generate the solution. For code translation, the model uses declarations in both languages and the solution in the source language as input, to generate solutions in the target language.
28
+
29
+ ## Languages
30
+
31
+ The dataset contains coding problems in 5 programming languages: Python, C++, Java, JavaScript, and Go.
32
+
33
+ ## Dataset Structure
34
+ To load the dataset you need to specify a subset among the **5 exiting languages** `[python, cpp, go, java, js]`. By default `python` is loaded.
35
+
36
+ ```python
37
+ from datasets import load_dataset
38
+ load_dataset("loubnabnl/humaneval-x", "js")
39
+
40
+ DatasetDict({
41
+ test: Dataset({
42
+ features: ['task_id', 'prompt', 'declaration', 'canonical_solution', 'test', 'example_test'],
43
+ num_rows: 164
44
+ })
45
+ })
46
+ ```
47
+
48
+ ```python
49
+ next(iter(data["train"]))
50
+ {'task_id': 'JavaScript/0',
51
+ 'prompt': '/* Check if in given list of numbers, are any two numbers closer to each other than\n given threshold.\n >>> hasCloseElements([1.0, 2.0, 3.0], 0.5)\n false\n >>> hasCloseElements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\n true\n */\nconst hasCloseElements = (numbers, threshold) => {\n',
52
+ 'declaration': '\nconst hasCloseElements = (numbers, threshold) => {\n',
53
+ 'canonical_solution': ' for (let i = 0; i < numbers.length; i++) {\n for (let j = 0; j < numbers.length; j++) {\n if (i != j) {\n let distance = Math.abs(numbers[i] - numbers[j]);\n if (distance < threshold) {\n return true;\n }\n }\n }\n }\n return false;\n}\n\n',
54
+ 'test': 'const testHasCloseElements = () => {\n console.assert(hasCloseElements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) === true)\n console.assert(\n hasCloseElements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) === false\n )\n console.assert(hasCloseElements([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) === true)\n console.assert(hasCloseElements([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) === false)\n console.assert(hasCloseElements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) === true)\n console.assert(hasCloseElements([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) === true)\n console.assert(hasCloseElements([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) === false)\n}\n\ntestHasCloseElements()\n',
55
+ 'example_test': 'const testHasCloseElements = () => {\n console.assert(hasCloseElements([1.0, 2.0, 3.0], 0.5) === false)\n console.assert(\n hasCloseElements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) === true\n )\n}\ntestHasCloseElements()\n'}
56
+ ```
57
+
58
+
59
+ ## Data Fields
60
+
61
+ * ``task_id``: indicates the target language and ID of the problem. Language is one of ["Python", "Java", "JavaScript", "CPP", "Go"].
62
+ * ``prompt``: the function declaration and docstring, used for code generation.
63
+ * ``declaration``: only the function declaration, used for code translation.
64
+ * ``canonical_solution``: human-crafted example solutions.
65
+ * ``test``: hidden test samples, used for evaluation.
66
+ * ``example_test``: public test samples (appeared in prompt), used for evaluation.
67
+
68
+ ## Data Splits
69
+
70
+ Each subset has one splits: test.
71
+
72
+ ## Citation Information
73
+
74
+ Refer to https://github.com/THUDM/CodeGeeX.
data/cpp/data/humaneval.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
data/go/data/humaneval.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
data/humaneval-x.py ADDED
File without changes
data/java/data/humaneval.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
data/js/data/humaneval.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
data/python/data/humaneval.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
humaneval-x.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """HumanEval-X dataset."""
16
+
17
+
18
+ import json
19
+ import datasets
20
+
21
+
22
+
23
+ _DESCRIPTION = """
24
+ HumanEval-X is a benchmark for the evaluation of the multilingual ability of code generative models. \
25
+ It consists of 820 high-quality human-crafted data samples (each with test cases) in Python, C++, Java, JavaScript, and Go, and can be used for various tasks.
26
+ """
27
+
28
+ _HOMEPAGE = "https://github.com/THUDM/CodeGeeX"
29
+
30
+ def get_url(name):
31
+ urls = {"test": f"data/{name}/data/humaneval.jsonl"}
32
+ return urls
33
+
34
+ def split_generator(dl_manager, name):
35
+ downloaded_files = get_url(name)
36
+ downloaded_files = dl_manager.download(get_url(name))
37
+ return [
38
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
39
+ ]
40
+
41
+
42
+ class HumanEvalXConfig(datasets.BuilderConfig):
43
+ """BuilderConfig """
44
+
45
+ def __init__(self, name, description, features, **kwargs):
46
+ super(HumanEvalXConfig, self).__init__(version=datasets.Version("2.1.0", ""), **kwargs)
47
+ self.name = name
48
+ self.description = description
49
+ self.features = features
50
+
51
+
52
+ class HumanEvalX(datasets.GeneratorBasedBuilder):
53
+ VERSION = datasets.Version("1.0.0")
54
+ BUILDER_CONFIGS = [
55
+ HumanEvalXConfig(
56
+ name="python",
57
+ description="Python HumanEval",
58
+ features=["task_id", "prompt", "declaration", "canonical_solution", "test", "example_test"]
59
+ ),
60
+ HumanEvalXConfig(
61
+ name="cpp",
62
+ description="C++ HumanEval",
63
+ features=["task_id", "prompt", "declaration", "canonical_solution", "test", "example_test"]
64
+ ),
65
+
66
+ HumanEvalXConfig(
67
+ name="go",
68
+ description="Go HumanEval",
69
+ features=["task_id", "prompt", "declaration", "canonical_solution", "test", "example_test"]
70
+ ),
71
+ HumanEvalXConfig(
72
+ name="java",
73
+ description="Java HumanEval",
74
+ features=["task_id", "prompt", "declaration", "canonical_solution", "test", "example_test"]
75
+ ),
76
+
77
+ HumanEvalXConfig(
78
+ name="js",
79
+ description="JavaScript HumanEval",
80
+ features=["task_id", "prompt", "declaration", "canonical_solution", "test", "example_test"]
81
+ ),
82
+ ]
83
+ DEFAULT_CONFIG_NAME = "python"
84
+
85
+ def _info(self):
86
+ return datasets.DatasetInfo(
87
+ description=_DESCRIPTION,
88
+ features=datasets.Features({"task_id": datasets.Value("string"),
89
+ "prompt": datasets.Value("string"),
90
+ "declaration": datasets.Value("string"),
91
+ "canonical_solution": datasets.Value("string"),
92
+ "test": datasets.Value("string"),
93
+ "example_test": datasets.Value("string"),
94
+ }),
95
+ homepage=_HOMEPAGE,
96
+ )
97
+
98
+ def _split_generators(self, dl_manager):
99
+ if self.config.name == "python":
100
+ return split_generator(dl_manager, self.config.name)
101
+
102
+ elif self.config.name == "cpp":
103
+ return split_generator(dl_manager, self.config.name)
104
+
105
+ elif self.config.name == "go":
106
+ return split_generator(dl_manager, self.config.name)
107
+
108
+ elif self.config.name == "java":
109
+ return split_generator(dl_manager, self.config.name)
110
+
111
+ elif self.config.name == "js":
112
+ return split_generator(dl_manager, self.config.name)
113
+
114
+ def _generate_examples(self, filepath):
115
+ key = 0
116
+ with open(filepath) as f:
117
+ for line in f:
118
+ row = json.loads(line)
119
+ key += 1
120
+ yield key, {
121
+ "task_id": row["task_id"],
122
+ "prompt": row["prompt"],
123
+ "declaration": row["declaration"],
124
+ "canonical_solution": row["canonical_solution"],
125
+ "test": row["test"],
126
+ "example_test": row["example_test"],
127
+
128
+ }
129
+ key += 1