TMVishnu commited on
Commit
22af72d
·
verified ·
1 Parent(s): b811e0e

added index

Browse files
Files changed (1) hide show
  1. README.md +42 -2
README.md CHANGED
@@ -10,7 +10,47 @@ size_categories:
10
 
11
  # Watch Market Analysis Graph Neural Network Dataset
12
 
13
- ## Executive Summary
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
  This dataset transforms traditional watch market data into a Graph Neural Network (GNN) structure, specifically designed to capture the complex dynamics of the pre-owned luxury watch market.
16
  It addresses three key market characteristics that traditional recommendation systems often miss:
@@ -350,4 +390,4 @@ def get_watch_features(watch_id):
350
  ## Note
351
  - The dataset is optimized for PyTorch Geometric operations
352
  - Recommended to use GPU for large-scale operations
353
- - Consider batch processing for memory efficiency
 
10
 
11
  # Watch Market Analysis Graph Neural Network Dataset
12
 
13
+ ## Table of Contents
14
+ 1. [Summary](#summary)
15
+ - [Key Statistics](#key-statistics)
16
+ - [Primary Use Cases](#primary-use-cases)
17
+
18
+ 2. [Dataset Description](#dataset-description)
19
+ - [Data Structure](#data-structure)
20
+ - [Features](#features)
21
+ - [Network Properties](#network-properties)
22
+ - [Processing Parameters](#processing-parameters)
23
+
24
+ 3. [Technical Details](#technical-details)
25
+ - [Power Analysis](#power-analysis)
26
+ - [Implementation Details](#implementation-details)
27
+ - [Network Architecture](#network-architecture)
28
+ - [Embedding Dimensions](#embedding-dimensions)
29
+ - [Network Parameters](#network-parameters)
30
+ - [Condition Scoring](#condition-scoring)
31
+
32
+ 4. [Exploratory Data Analysis](#exploratory-data-analysis)
33
+ - [Brand Distribution](#brand-distribution)
34
+ - [Feature Correlations](#feature-correlations)
35
+ - [Market Structure Visualizations](#market-structure-visualizations)
36
+ - [UMAP Analysis](#umap-analysis)
37
+ - [t-SNE Visualization](#t-sne-visualization)
38
+ - [PCA Analysis](#pca-analysis)
39
+ - [Network Visualizations](#network-visualizations)
40
+
41
+ 5. [Ethics and Limitations](#ethics-and-limitations)
42
+ - [Data Collection and Privacy](#data-collection-and-privacy)
43
+ - [Known Biases](#known-biases)
44
+ - [Usage Guidelines](#usage-guidelines)
45
+ - [License](#license)
46
+
47
+ 6. [Usage](#usage)
48
+ - [Required Files](#required-files)
49
+ - [Loading the Dataset](#loading-the-dataset)
50
+ - [Code Examples](#loading-the-dataset)
51
+
52
+
53
+ ## Summary
54
 
55
  This dataset transforms traditional watch market data into a Graph Neural Network (GNN) structure, specifically designed to capture the complex dynamics of the pre-owned luxury watch market.
56
  It addresses three key market characteristics that traditional recommendation systems often miss:
 
390
  ## Note
391
  - The dataset is optimized for PyTorch Geometric operations
392
  - Recommended to use GPU for large-scale operations
393
+ - Consider batch processing for memory efficiency