File size: 1,629 Bytes
bab8c6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import keras
from keras.layers import Dense, BatchNormalization
from keras import regularizers
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint, EarlyStopping
import pandas as pd
import numpy as np
# Model parameters:
activation = 'relu'
final_activation = 'sigmoid'
loss = 'binary_crossentropy'
batchsize = 200
epochs = 100
lr = 0.000003
class_weight = {0: 0.10, 1: 1.0}
# Model architecture:
model = keras.Sequential()
model.add(Dense(units=153, input_shape=(153,), activation=activation))
model.add(Dense(units=153, activation=activation))
model.add(Dense(units=64, activation=activation))
model.add(Dense(units=64, activation=activation))
model.add(Dense(units=32, activation=activation))
model.add(Dense(units=32, activation=activation))
model.add(Dense(units=16, activation=activation))
model.add(Dense(units=16, activation=activation))
model.add(Dense(units=1, activation=final_activation))
model.compile(optimizer=Adam(learning_rate=lr), loss=loss,
metrics=['accuracy', 'AUC'])
model.summary()
# Model checkpoints:
saveModel = ModelCheckpoint('best_model.hdf5',
save_best_only=True,
monitor='val_loss',
mode='min')
# Model training:
model.fit(
x_train,
y_train,
batch_size=batchsize,
callbacks=[EarlyStopping(verbose=True, patience=25, monitor='val_loss'), saveModel],
epochs=epochs,
validation_data=(
x_val,
y_val),
shuffle=True,
class_weight=class_weight) |