Add Model.py
Browse files
Model.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import keras
|
2 |
+
from keras.layers import Dense, BatchNormalization
|
3 |
+
from keras import regularizers
|
4 |
+
from keras.optimizers import Adam
|
5 |
+
from keras.callbacks import ModelCheckpoint, EarlyStopping
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
# Model parameters:
|
11 |
+
activation = 'relu'
|
12 |
+
final_activation = 'sigmoid'
|
13 |
+
loss = 'binary_crossentropy'
|
14 |
+
batchsize = 200
|
15 |
+
epochs = 100
|
16 |
+
lr = 0.00005
|
17 |
+
|
18 |
+
# Model architecture:
|
19 |
+
model = keras.Sequential()
|
20 |
+
model.add(
|
21 |
+
Dense(units=300, input_dim=x_train.shape[1], activation=activation, kernel_regularizer=regularizers.L1(0.001)))
|
22 |
+
model.add(BatchNormalization())
|
23 |
+
model.add(Dense(units=102, activation=activation, kernel_regularizer=regularizers.L1(0.001)))
|
24 |
+
model.add(BatchNormalization())
|
25 |
+
model.add(Dense(units=12, activation=activation, kernel_regularizer=regularizers.L1(0.001)))
|
26 |
+
model.add(BatchNormalization())
|
27 |
+
model.add(Dense(units=6, activation=activation, kernel_regularizer=regularizers.L1(0.001)))
|
28 |
+
model.add(BatchNormalization())
|
29 |
+
model.add(Dense(units=1, activation=final_activation))
|
30 |
+
|
31 |
+
model.compile(optimizer=Adam(learning_rate=lr),
|
32 |
+
loss=loss,
|
33 |
+
metrics=['accuracy', 'AUC'])
|
34 |
+
model.summary()
|
35 |
+
|
36 |
+
|
37 |
+
# Model checkpoints:
|
38 |
+
saveModel = ModelCheckpoint('best_model.hdf5',
|
39 |
+
save_best_only=True,
|
40 |
+
monitor='val_loss',
|
41 |
+
mode='min')
|
42 |
+
|
43 |
+
|
44 |
+
# Model training:
|
45 |
+
|
46 |
+
history = model.fit(
|
47 |
+
x_train,
|
48 |
+
y_train,
|
49 |
+
batch_size=batchsize,
|
50 |
+
callbacks=[EarlyStopping(verbose=True, patience=10, monitor='val_loss'), saveModel],
|
51 |
+
epochs=epochs,
|
52 |
+
validation_data=(
|
53 |
+
x_val,
|
54 |
+
y_val))
|