TSaala commited on
Commit
9fcbfc5
·
verified ·
1 Parent(s): 72c1118

Add Model.py

Browse files
Files changed (1) hide show
  1. Model.py +54 -0
Model.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import keras
2
+ from keras.layers import Dense, BatchNormalization
3
+ from keras import regularizers
4
+ from keras.optimizers import Adam
5
+ from keras.callbacks import ModelCheckpoint, EarlyStopping
6
+
7
+ import pandas as pd
8
+ import numpy as np
9
+
10
+ # Model parameters:
11
+ activation = 'relu'
12
+ final_activation = 'sigmoid'
13
+ loss = 'binary_crossentropy'
14
+ batchsize = 200
15
+ epochs = 100
16
+ lr = 0.00005
17
+
18
+ # Model architecture:
19
+ model = keras.Sequential()
20
+ model.add(
21
+ Dense(units=300, input_dim=x_train.shape[1], activation=activation, kernel_regularizer=regularizers.L1(0.001)))
22
+ model.add(BatchNormalization())
23
+ model.add(Dense(units=102, activation=activation, kernel_regularizer=regularizers.L1(0.001)))
24
+ model.add(BatchNormalization())
25
+ model.add(Dense(units=12, activation=activation, kernel_regularizer=regularizers.L1(0.001)))
26
+ model.add(BatchNormalization())
27
+ model.add(Dense(units=6, activation=activation, kernel_regularizer=regularizers.L1(0.001)))
28
+ model.add(BatchNormalization())
29
+ model.add(Dense(units=1, activation=final_activation))
30
+
31
+ model.compile(optimizer=Adam(learning_rate=lr),
32
+ loss=loss,
33
+ metrics=['accuracy', 'AUC'])
34
+ model.summary()
35
+
36
+
37
+ # Model checkpoints:
38
+ saveModel = ModelCheckpoint('best_model.hdf5',
39
+ save_best_only=True,
40
+ monitor='val_loss',
41
+ mode='min')
42
+
43
+
44
+ # Model training:
45
+
46
+ history = model.fit(
47
+ x_train,
48
+ y_train,
49
+ batch_size=batchsize,
50
+ callbacks=[EarlyStopping(verbose=True, patience=10, monitor='val_loss'), saveModel],
51
+ epochs=epochs,
52
+ validation_data=(
53
+ x_val,
54
+ y_val))