Datasets:
Tasks:
Text Retrieval
Modalities:
Text
Formats:
json
Sub-tasks:
document-retrieval
Languages:
Slovak
Size:
10K - 100K
Tags:
text-retrieval
DOI:
License:
File size: 2,238 Bytes
a8a2b54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import pandas as pd
# recall@k function
def recall(actual, predicted, k):
"""
Calculate recall for set results
:param actual: actual results on question from annotated datatest
:param predicted: predicted results on question from searched engine
:param k: max results in set
:return: recall value
"""
# corrects results
act_set = actual
# search results (count edit k)
pred_set = predicted[:k]
# count and find same numbers
common_elements = 0
for item in act_set:
if item in pred_set:
common_elements += 1
result = round(common_elements / float(len(act_set)), 2)
return result
def count_recall(actual_list, predicted_list, count_results):
"""
Calculate recall for search engine
:param actual_list: actual results from annotated datatest
:param predicted_list: predicted results from searched engine
:return: average recall value
"""
# set values for parameter k
k_start = 3
k_end = count_results + 1
# Initialization empty DataFrame
df_recall = pd.DataFrame(index=range(3, count_results + 1))
# For cycle go to every predicted questions
for i, predicted_val in enumerate(predicted_list, 1):
recalls = []
# Count recall for question
for k in range(k_start, k_end):
recall_val = recall(actual_list[i - 1], predicted_val, k)
recalls.append(recall_val)
df_temp = pd.DataFrame({f"Question {i}": recalls}, index=range(3, count_results + 1))
df_recall = pd.concat([df_recall, df_temp], axis=1)
df_recall[f"Question {i}"] = recalls
# Calculate the average recall value for each number of questions
average_recall = df_recall.mean(axis=1)
# Print list the recall values for each question separately
# print("Recall values for every question:")
# print(df_recall)
# set results two dots numbers
pd.set_option('display.float_format', '{:.2f}'.format)
# Print all mean recall
# print(f"\nAll Mean Recall for {count_results} results :{round(average_recall.mean(), 2)}")
print(f"Recall Metric for {count_results} is: {round(average_recall.iloc[-1], 2)}")
return average_recall
|