Datasets:

Modalities:
Text
Formats:
json
Languages:
Slovak
DOI:
Libraries:
Datasets
pandas
License:
retrieval-skquad / automatic_evaluation.py
fejso's picture
Upload 8 files
a8a2b54 verified
raw
history blame
3.29 kB
"""
Michal Stromko Automating Evaluation Script Annotated Dataset
for task Semantic Evaluation
"""
import os
import sys
import json
from metrics import recall, mrr, map, ndcg
from filtering_parsing import filtering_annotated, filtering_predicted
def load_jsonl_file(file_path: str):
"""
Load jsonl file
:param file_path: path to the file
:return: json data
"""
data = []
with open(file_path, "r", encoding="utf-8") as f:
for line in f:
data.append(json.loads(line))
return data
def load_json_file(file_path: str):
"""
Load json file
:param file_path: path to the file
:return: json data
"""
with open(file_path, "r", encoding="utf-8") as f:
data = json.load(f)
return data
if __name__ == '__main__':
# get file names
f_annotated_final = sys.argv[1]
f_predicted_final = sys.argv[2]
# load files
print("Loading datasets")
final_annotated = load_jsonl_file(f_annotated_final)
predicted = load_json_file(f_predicted_final)
print("Loaded datasets")
# filtering parsing annotated dataset
filtered_annotated_dataset = filtering_annotated.first_filtering_annotated(final_annotated)
filtering_annotated.counting_count_results(filtered_annotated_dataset)
actual_results = filtering_annotated.second_filtering_annotated(filtered_annotated_dataset)
# filtering and parsing predicted dataset
predicted_results = filtering_predicted.prediction_filtering_dataset(predicted)
# prepare dataset for ndcg evaluation
correct_answers_ndcg = ndcg.filtering_annotated_dataset_for_eval_ndcg(filtered_annotated_dataset)
predicted_ndcg = ndcg.filter_and_parsing_assignment_article_id_to_category(predicted_results, correct_answers_ndcg)
print("\n")
count_results = [5, 10, 15]
# Evaluation Dataset
print("Start evaluation")
# count recall
for i in range(0, len(count_results)):
print(f"Count Recall Metric for {count_results[i]} results:")
recall_value = recall.count_recall(actual_results, predicted_results, count_results[i])
print(f"\nMean value Recall for every count questions: \n{recall_value}")
print("\n")
print("---------------------------------------------------------")
# count mrr
for i in range(0, len(count_results)):
print(f"Count MRR Metric for {count_results[i]} results:")
mrr.count_mrr(actual_results, predicted_results, count_results[i])
print("\n ")
print("---------------------------------------------------------")
# count map
for i in range(0, len(count_results)):
print(f"Count MAP Metric for {count_results[i]} results:")
results, total_mAP = map.count_map(actual_results, predicted_results, count_results[i])
print("Results for individual questions:")
print(results)
print("\n")
print("---------------------------------------------------------")
# count ndcg
for i in range(0, len(count_results)):
print(f"Count NDCG Metric for {count_results[i]}:")
ndcg_res = ndcg.count_ndcg(predicted_ndcg, count_results[i])
print("\n")
print("---------------------------------------------------------")
print("Finish evaluation")