Datasets:
Tasks:
Text Retrieval
Modalities:
Text
Formats:
json
Sub-tasks:
document-retrieval
Languages:
Slovak
Size:
10K - 100K
Tags:
text-retrieval
DOI:
License:
import pandas as pd | |
def count_map(actual_list, predicted_list, count_results): | |
""" | |
Funtion for count MAP metric | |
:param actual_list: actual results from annotated datatest | |
:param predicted_list: predicted results from searched engine | |
:return: map value in question MAP value | |
""" | |
# Initialization empty list for results | |
questions = [] | |
k_stops = [] | |
frequencies = [] | |
mAPs = [] | |
# For every question | |
for q, (actual, predicted) in enumerate(zip(actual_list, predicted_list), 1): | |
k_stop = None # initialization value who stop cycle for this question | |
ap_sum = 0 # initialization sum AP on question | |
count = 0 # count value k_stop | |
# Loop throw values k | |
for x, pred_value in enumerate(predicted[:count_results], 1): | |
act_set = set(actual) | |
pred_set = set(predicted[:x]) | |
precision_at_k = len(act_set & pred_set) / x | |
if pred_value in actual: | |
rel_k = 1 | |
else: | |
rel_k = 0 | |
ap_sum += precision_at_k * rel_k | |
# If we have found all the relevant values and we don't have k_stop yet, we stop | |
if len(act_set) == ap_sum and k_stop is None: | |
k_stop = x | |
count += 1 | |
# If we haven't reached k_stop by 15, we set it to 15 | |
if k_stop is None: | |
k_stop = count_results | |
# Count mAP for question | |
ap_q = ap_sum / len(actual) | |
# Save results to list | |
questions.append(q) | |
k_stops.append(k_stop) | |
frequencies.append(count) | |
mAPs.append(round(ap_q, 2)) | |
# Create DataFrame from results | |
df_results = pd.DataFrame({'Question': questions, 'k_stop': k_stops, 'Frequency': frequencies, 'mAP': mAPs}) | |
# Count total mAP | |
total_mAP = round(df_results['mAP'].mean(), 2) | |
print(f"MAP Metric for {count_results} is: {total_mAP}") | |
k_stop_counts = df_results['k_stop'].value_counts() | |
print(f"Count of K_stop \n{k_stop_counts}") | |
return df_results, round(total_mAP,2) | |