Datasets:
Tasks:
Text Retrieval
Modalities:
Text
Formats:
json
Sub-tasks:
document-retrieval
Languages:
Slovak
Size:
10K - 100K
Tags:
text-retrieval
DOI:
License:
def count_mrr(actual_list, predicted_list, count_results): | |
""" | |
Function for calculate MRR metric | |
:param actual_list: actual results from annotated datatest | |
:param predicted_list: predicted results from searched engine | |
:return: None | |
""" | |
# number of queries | |
Q = len(actual_list) | |
# calculate the reciprocal rank for each query | |
cumulative_reciprocal = 0 | |
# initialize dictionary to store count of relevant results for each query | |
relevant_results_count = {i: 0 for i in range(1, count_results + 1)} | |
for i in range(Q): | |
actual = actual_list[i] | |
pred = predicted_list[i][:count_results] | |
reciprocal_rank = 0 | |
for j, result in enumerate(pred, 1): | |
if result in actual: | |
reciprocal_rank = 1 / j | |
relevant_results_count[j] += 1 # increment count of relevant results for this query | |
break | |
cumulative_reciprocal += reciprocal_rank | |
# print(f"query #{i+1} = {1}/{j} = {reciprocal_rank}") | |
# calculate MRR | |
mrr = cumulative_reciprocal / Q | |
# generate result | |
print(f"MRR Metric for {count_results} is: {round(mrr, 2)}") | |
# generate table of relevant results count | |
print("Table of Relevant Results Count:") | |
print("Position | Count") | |
for position, count in relevant_results_count.items(): | |
print(f"{position:^9} | {count:^5}") |