Datasets:

Modalities:
Text
Formats:
json
Languages:
Slovak
DOI:
Libraries:
Datasets
pandas
License:
fejso's picture
Upload 8 files
a8a2b54 verified
raw
history blame
1.4 kB
def count_mrr(actual_list, predicted_list, count_results):
"""
Function for calculate MRR metric
:param actual_list: actual results from annotated datatest
:param predicted_list: predicted results from searched engine
:return: None
"""
# number of queries
Q = len(actual_list)
# calculate the reciprocal rank for each query
cumulative_reciprocal = 0
# initialize dictionary to store count of relevant results for each query
relevant_results_count = {i: 0 for i in range(1, count_results + 1)}
for i in range(Q):
actual = actual_list[i]
pred = predicted_list[i][:count_results]
reciprocal_rank = 0
for j, result in enumerate(pred, 1):
if result in actual:
reciprocal_rank = 1 / j
relevant_results_count[j] += 1 # increment count of relevant results for this query
break
cumulative_reciprocal += reciprocal_rank
# print(f"query #{i+1} = {1}/{j} = {reciprocal_rank}")
# calculate MRR
mrr = cumulative_reciprocal / Q
# generate result
print(f"MRR Metric for {count_results} is: {round(mrr, 2)}")
# generate table of relevant results count
print("Table of Relevant Results Count:")
print("Position | Count")
for position, count in relevant_results_count.items():
print(f"{position:^9} | {count:^5}")