Datasets:
Tasks:
Text Retrieval
Modalities:
Text
Formats:
json
Sub-tasks:
document-retrieval
Languages:
Slovak
Size:
10K - 100K
Tags:
text-retrieval
DOI:
License:
Update README.md
Browse files
README.md
CHANGED
@@ -94,6 +94,42 @@ Scores of the answers are based on the annotators decisions:
|
|
94 |
- 2 : paragraph is partially relevant
|
95 |
- 0 : paragraphs is no relevant
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
### Database Content
|
99 |
|
|
|
94 |
- 2 : paragraph is partially relevant
|
95 |
- 0 : paragraphs is no relevant
|
96 |
|
97 |
+
### Evaluation of an embedding model
|
98 |
+
|
99 |
+
For evaluation of an embedding model with this dataset, you can use HF datasets and BEIR toolit:
|
100 |
+
|
101 |
+
Example of evaluation of a model:
|
102 |
+
|
103 |
+
```python
|
104 |
+
from beir import util, LoggingHandler
|
105 |
+
from beir.retrieval import models
|
106 |
+
from beir.datasets.data_loader import GenericDataLoader
|
107 |
+
from beir.retrieval.evaluation import EvaluateRetrieval
|
108 |
+
from beir.retrieval.search.dense import DenseRetrievalExactSearch as DRES
|
109 |
+
from huggingface_hub import snapshot_download
|
110 |
+
import logging
|
111 |
+
import pathlib, os
|
112 |
+
|
113 |
+
#### Just some code to print debug information to stdout
|
114 |
+
logging.basicConfig(format='%(asctime)s - %(message)s',
|
115 |
+
datefmt='%Y-%m-%d %H:%M:%S',
|
116 |
+
level=logging.INFO,
|
117 |
+
handlers=[LoggingHandler()])
|
118 |
+
#
|
119 |
+
data_path = snapshot_download(repo_id="TUKE-KEMT/retrieval-skquad",repo_type="dataset")
|
120 |
+
model_path = "TUKE-DeutscheTelekom/slovakbert-skquad-mnlr"
|
121 |
+
|
122 |
+
model = DRES(models.SentenceBERT(model_path), batch_size=16)
|
123 |
+
|
124 |
+
corpus, queries, qrels = GenericDataLoader(data_folder=data_path).load(split="test")
|
125 |
+
|
126 |
+
#### Load the SBERT model and retrieve using cosine-similarity
|
127 |
+
retriever = EvaluateRetrieval(model, score_function="dot") # or "cos_sim" for cosine similarity
|
128 |
+
results = retriever.retrieve(corpus, queries)
|
129 |
+
|
130 |
+
#### Evaluate your model with NDCG@k, MAP@K, Recall@K and Precision@K where k = [1,3,5,10,100,1000]
|
131 |
+
ndcg, _map, recall, precision = retriever.evaluate(qrels, results, retriever.k_values)
|
132 |
+
```
|
133 |
|
134 |
### Database Content
|
135 |
|