""" Michal Stromko Automating Evaluation Script Annotated Dataset for task Semantic Evaluation """ import os import sys import json from metrics import recall, mrr, map, ndcg from filtering_parsing import filtering_annotated, filtering_predicted def load_jsonl_file(file_path: str): """ Load jsonl file :param file_path: path to the file :return: json data """ data = [] with open(file_path, "r", encoding="utf-8") as f: for line in f: data.append(json.loads(line)) return data def load_json_file(file_path: str): """ Load json file :param file_path: path to the file :return: json data """ with open(file_path, "r", encoding="utf-8") as f: data = json.load(f) return data if __name__ == '__main__': # get file names f_annotated_final = sys.argv[1] f_predicted_final = sys.argv[2] # load files print("Loading datasets") final_annotated = load_jsonl_file(f_annotated_final) predicted = load_json_file(f_predicted_final) print("Loaded datasets") # filtering parsing annotated dataset filtered_annotated_dataset = filtering_annotated.first_filtering_annotated(final_annotated) filtering_annotated.counting_count_results(filtered_annotated_dataset) actual_results = filtering_annotated.second_filtering_annotated(filtered_annotated_dataset) # filtering and parsing predicted dataset predicted_results = filtering_predicted.prediction_filtering_dataset(predicted) # prepare dataset for ndcg evaluation correct_answers_ndcg = ndcg.filtering_annotated_dataset_for_eval_ndcg(filtered_annotated_dataset) predicted_ndcg = ndcg.filter_and_parsing_assignment_article_id_to_category(predicted_results, correct_answers_ndcg) print("\n") count_results = [5, 10, 15] # Evaluation Dataset print("Start evaluation") # count recall for i in range(0, len(count_results)): print(f"Count Recall Metric for {count_results[i]} results:") recall_value = recall.count_recall(actual_results, predicted_results, count_results[i]) print(f"\nMean value Recall for every count questions: \n{recall_value}") print("\n") print("---------------------------------------------------------") # count mrr for i in range(0, len(count_results)): print(f"Count MRR Metric for {count_results[i]} results:") mrr.count_mrr(actual_results, predicted_results, count_results[i]) print("\n ") print("---------------------------------------------------------") # count map for i in range(0, len(count_results)): print(f"Count MAP Metric for {count_results[i]} results:") results, total_mAP = map.count_map(actual_results, predicted_results, count_results[i]) print("Results for individual questions:") print(results) print("\n") print("---------------------------------------------------------") # count ndcg for i in range(0, len(count_results)): print(f"Count NDCG Metric for {count_results[i]}:") ndcg_res = ndcg.count_ndcg(predicted_ndcg, count_results[i]) print("\n") print("---------------------------------------------------------") print("Finish evaluation")