import re import string from typing import List import numpy as np def scale_to_num(scale): scale = scale.lower() num = 1 if 'hundred' in scale: # hundred num = 100 elif 'thousand' in scale: # thousand num = 1000 elif 'million' in scale: # million num = 1000000 elif 'billion' in scale: # billion num = 1000000000 elif 'percent' in scale: # percent num = 0.01 return num def extract_one_num_from_str(s): s = _clean_num(s) r_num = r"([+-]?\d+(\.\d+)?)|([+-]?\.\d+)" groups = re.findall(r_num, s) if len(groups) == 0: return None num = groups[0][0] if num == '': return None if '.' in num: return float(num) return int(num) EXCLUDE_IN_NUM = "'\"\\$€£¥%(),[]" def _clean_num(text:str): return "".join([ch for ch in str(text) if ch not in EXCLUDE_IN_NUM]) def is_number(text: str) -> bool: try: words = " ".join([_clean_num(w) for w in text.split()]).split() if len(words) == 0: """1023 or 1 million""" return False num = float(words[0]) if np.isnan(num): return False if len(words) >= 2: if scale_to_num(words[1]) == 1: return False return True except ValueError: return False # except AttributeError: # return False def negative_num_handle(x): """ :param x: transform (134) -> -134 :return: """ all = re.findall('(\([\d.\s]+\))', x.strip()) if len(all) > 0: return -1 return 1 def percent_num_handle(x): """ :param x: transform 12% -> 12/100 :return: """ all = re.findall('([\d.\s]+%)', x.strip()) if len(all) > 0: return 0.01 return 1 def word_scale_handle(x): """ :param x: 1 million = 1,000,000 :return: """ iter = re.finditer('([\d.]+\s?[a-zA-Z]+)', x) for one in iter: text = one.group(0).lower() scale_val = scale_to_num(text) return scale_val return 1 def to_number(text:str) -> float: num = extract_one_num_from_str(text) scale_val = word_scale_handle(text) negative_flag = negative_num_handle(text) percent_flag = percent_num_handle(text) if num is not None: return round(num * scale_val * negative_flag * percent_flag, 4) return None def remove_articles(text: str) -> str: regex = re.compile(r'\b(a|an|the)\b', re.UNICODE) return re.sub(regex, ' ', text) def white_space_fix(text: str) -> str: return ' '.join(text.split()) EXCLUDE = set(string.punctuation) def remove_punc(text: str) -> str: if not is_number(text): return ''.join(ch for ch in text if ch not in EXCLUDE) else: return text def lower(text: str) -> str: return text.lower() def tokenize(text: str) -> List[str]: return re.split(" ", text) def normalize_number(text: str) -> str: if is_number(text): return str(to_number(text)) else: return text def normalize_answer(text: str) -> str: """Lower text and remove punctuation, articles and extra whitespace.""" parts = [white_space_fix(remove_articles(normalize_number(remove_punc(lower(token))))) for token in tokenize(text)] parts = [part for part in parts if part.strip()] normalized = ' '.join(parts).strip() return normalized STRIPPED_CHARACTERS = string.punctuation + ''.join([u"‘", u"’", u"´", u"`", "_"]) def ws_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip().lower() if not text: return [] text = white_space_fix(text) tokens = text.split() tokens = [token.strip(STRIPPED_CHARACTERS) for token in tokens] return tokens