--- language: - en size_categories: - 50K **Description** > This dataset provides **90,000 synthetic rows** of silicon nitride (Si₃N₄) photonic waveguide parameters, focusing on **waveguide loss** and **efficiency** metrics. The data is useful for modeling, simulation, or LLM fine tuning to predict and understand the relationship between fabrication/design parameters and optical performance. ## Key Highlights ✨ - **Material Focus**: Silicon Nitride (Si₃N₄) - **Columns**: 25 structured columns capturing waveguide geometry, fabrication method, operational conditions, and measured/synthetic performance metrics - **Size**: 90,000 rows (ideal for both training and validation splits) - **Use Cases**: - Waveguide loss prediction - Process control and optimization - Photonic design parameter studies - Synthetic data augmentation for AI/ML tasks ## Dataset Structure 🏗️ Each row corresponds to a **single waveguide configuration** or measurement instance, including: 1. **Waveguide Geometry** - `waveguide_width` (µm) - `waveguide_height` (nm or µm) - `bend_radius` (µm) - `device_length` (mm) 2. **Material & Fabrication** - `cladding_material` - `cladding_thickness` (µm) - `deposition_method` - `etch_method` - `sidewall_roughness` (nm) - `annealing_params` 3. **Operational Parameters** - `wavelength` (nm) - `polarization` (TE/TM) - `input_power` (dBm) - `temperature` (°C) 4. **Performance Metrics** - `insertion_loss` (dB) - `propagation_loss` (dB/cm) - `coupling_efficiency_input` (%) - `coupling_efficiency_output` (%) - `scattering_loss` (dB/cm) - `effective_index` - `mode_confinement_factor` (0–1) 5. **Metadata** - `batch_id` (fabrication batch/wafer ID) - `data_source` (Synthetic or Measurement) - `measurement_method` (e.g., cut-back, ring_resonance) - `uncertainty` (± dB or %) ## Example Row waveguide_width = 1.212 waveguide_height = 400.00 cladding_material = SiO2 cladding_thickness = 2.50 deposition_method = LPCVD etch_method = RIE sidewall_roughness = 2.05 annealing_params = 900C_3hr wavelength = 1552.23 polarization = TE input_power = 0.00 temperature = 25.00 bend_radius = 50.00 device_length = 10.00 insertion_loss = 3.50 propagation_loss = 0.300 coupling_efficiency_input = 72.00 coupling_efficiency_output = 68.00 scattering_loss = 0.15 effective_index = 1.800 mode_confinement_factor = 0.80 batch_id = BATCH_12 data_source = Synthetic measurement_method = ring_resonance uncertainty = 0.05 ## How to Use 💡 1. **Download/Clone** - You can download the CSV file manually or use Hugging Face’s `datasets` library: ```python from datasets import load_dataset dataset = load_dataset("username/SiN_Photonic_Waveguide_Loss_Efficiency") ``` 2. **Loading & Exploration** - Load into your favorite Python environment (`pandas`, `polars`, etc.) to quickly explore the data distribution: ```python import pandas as pd df = pd.read_csv("SiN_Photonic_Waveguide_Loss_Efficiency.csv") print(df.head()) ``` 3. **Model Training** - For tasks like waveguide loss prediction, treat the waveguide geometry/fabrication columns as input features, and the `insertion_loss` or `propagation_loss` columns as the labels or targets. - Example ML scenario: ```python features = df[[ "waveguide_width", "waveguide_height", "sidewall_roughness", "wavelength", "polarization", "temperature" ]] target = df["propagation_loss"] # Then train a regression model, e.g., scikit-learn, XGBoost, etc. ``` 4. **Synthetic Data Augmentation** - Use this synthetic dataset to **supplement** smaller real datasets ## Caveats & Limitations ⚠️ - **Synthetic Nature**: While ranges are inspired by real-world photonic designs, actual values may differ based on specific foundries, tools, and processes. - **Statistical Simplifications**: Not all real-world correlations or distributions (e.g., non-uniform doping profiles, advanced thermal effects) are captured. - **Measurement Noise**: The `uncertainty` column does not fully replicate complex measurement artifacts. ## License 📄 This dataset is available under the **MIT License**. You are free to modify, distribute, and use it for commercial or non-commercial purposes—just provide attribution. ## Citation & Acknowledgments 🙌 If you use this dataset in your research or applications, please cite it as follows (example citation): > **Author**: _https://huggingface.co/Taylor658_ > **Title**: _SiN Photonic Waveguide Loss & Efficiency (Synthetic)_ > **Year**: 2025 ```bibtex @misc{sin_waveguide_loss_efficiency_2025, title = {SiN Photonic Waveguide Loss & Efficiency (Synthetic)}, author = {atayloraeropsace}, year = {2025}, howpublished = {\url{https://huggingface.co/datasets/username/SiN_Photonic_Waveguide_Loss_Efficiency}} } ``` ## Contributing 🧑‍💻 We welcome community contributions, ideas, and corrections: - **Add additional columns** (e.g., doping profiles, stress levels, advanced measurement data). ---