File size: 1,920 Bytes
0a06c1c
 
10d0194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a06c1c
10d0194
 
 
 
 
 
 
 
 
 
 
 
 
 
34fe7de
 
8de0a73
10d0194
 
c36e868
 
 
 
10d0194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: mit
language:
- nb
task_categories:
- image-to-text
pretty_name: NorHand v1
dataset_info:
  features:
  - name: image
    dtype: image
  - name: text
    dtype: string
  splits:
  - name: train
    num_examples: 19653
  - name: validation
    num_examples: 2286
  - name: test
    num_examples: 1793
  dataset_size: 23732
---

# NorHand v1 Dataset

## Table of Contents
- [NorHand v1 Dataset](#norhand-v1-dataset)
  - [Table of Contents](#table-of-contents)
  - [Dataset Description](#dataset-description)
    - [Languages](#languages)
  - [Dataset Structure](#dataset-structure)
    - [Data Instances](#data-instances)
    - [Data Fields](#data-fields)

## Dataset Description

- **Homepage:** [Hugin-Munin project](https://hugin-munin-project.github.io/)
- **Source:** [Zenodo](https://zenodo.org/records/6542056)
- **Paper:** [A Comprehensive Comparison of Open-Source Libraries for Handwritten Text Recognition in Norwegian](https://link.springer.com/chapter/10.1007/978-3-031-06555-2_27)
- **Point of Contact:** [TEKLIA](https://teklia.com)

## Dataset Summary 

The NorHand v1 dataset comprises Norwegian letter and diary line images and text from 19th and early 20th century.

### Languages

All the documents in the dataset are written in Norwegian Bokmål.

## Dataset Structure

### Data Instances

```
{
  'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=4300x128 at 0x1A800E8E190,
  'text': 'fredag 1923'
}
```

### Data Fields


- `image`: A PIL.Image.Image object containing the image. Note that when accessing the image column: dataset[0]["image"] the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the "image" column, i.e. dataset[0]["image"] should always be preferred over dataset["image"][0].
- `text`: the label transcription of the image.