# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import json import datasets _CITATION = ''' @inproceedings{ thakur2021beir, title={{BEIR}: A Heterogeneous Benchmark for Zero-shot Evaluation of Information Retrieval Models}, author={Nandan Thakur and Nils Reimers and Andreas R{\"u}ckl{\'e} and Abhishek Srivastava and Iryna Gurevych}, booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)}, year={2021}, url={https://openreview.net/forum?id=wCu6T5xFjeJ} } ''' all_data = [ 'arguana', 'climate-fever', 'cqadupstack-android', 'cqadupstack-english', 'cqadupstack-gaming', 'cqadupstack-gis', 'cqadupstack-mathematica', 'cqadupstack-physics', 'cqadupstack-programmers', 'cqadupstack-stats', 'cqadupstack-tex', 'cqadupstack-unix', 'cqadupstack-webmasters', 'cqadupstack-wordpress', 'dbpedia-entity', 'fever', 'fiqa', 'hotpotqa', 'nfcorpus', 'quora', 'scidocs', 'scifact', 'trec-covid', 'webis-touche2020', 'nq' ] _DESCRIPTION = 'dataset load script for BEIR' _DATASET_URLS = { data: { 'test': f'https://huggingface.co/datasets/Tevatron/beir/resolve/main/{data}.jsonl', } for data in all_data } class BEIR(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [datasets.BuilderConfig( version=datasets.Version('1.0.0'), name=data, description=f'BEIR dataset: {data}.' ) for data in all_data ] def _info(self): features = datasets.Features({ 'query_id': datasets.Value('string'), 'query': datasets.Value('string'), }) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations supervised_keys=None, # Homepage of the dataset for documentation homepage='https://github.com/beir-cellar/beir', # License for the dataset if available license='', # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): lang = self.config.name downloaded_files = dl_manager.download_and_extract(_DATASET_URLS[lang]) splits = [ datasets.SplitGenerator( name='test', gen_kwargs={ 'filepath': downloaded_files['test'], }, ), ] return splits def _generate_examples(self, filepath): with open(filepath) as f: for i, line in enumerate(f): data = json.loads(line) qid = data['query_id'] yield qid, data