File size: 8,843 Bytes
3c0072d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
# coding=utf-8
# Copyright 2022 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gzip
import json
from datetime import datetime
from functools import lru_cache
from typing import Dict, List
import datasets
_CITATION = """\
@misc{BritishLibraryBooks2021,
author = {British Library Labs},
title = {Digitised Books. c. 1510 - c. 1900. JSONL (OCR derived text + metadata)},
year = {2021},
publisher = {British Library},
howpublished={https://doi.org/10.23636/r7w6-zy15}
"""
_DESCRIPTION = """\
A dataset comprising of text created by OCR from the 49,455 digitised books, equating to 65,227 volumes (25+ million pages), published between c. 1510 - c. 1900.
The books cover a wide range of subject areas including philosophy, history, poetry and literature.
"""
_BASE_URL = "https://bl.iro.bl.uk/downloads/"
_DATA_URLS = {
"1510_1699": _BASE_URL + "61f58234-b370-422f-8591-8f98e46c2757?locale=en",
"1700_1799": _BASE_URL + "78b4a8ec-395e-4383-831c-809faff85ad7?locale=en",
"1800_1809": _BASE_URL + "91ae15cb-e08f-4abf-8396-e4742d9d4e37?locale=en",
"1810_1819": _BASE_URL + "6d1a6e17-f28d-45b9-8f7a-a03cf3a96491?locale=en",
"1820_1829": _BASE_URL + "ec764dbd-1ed4-4fc2-8668-b4df5c8ec451?locale=en",
"1830_1839": _BASE_URL + "eab68022-0418-4df7-a401-78972514ed20?locale=en",
"1840_1849": _BASE_URL + "d16d88b0-aa3f-4dfe-b728-c58d168d7b4d?locale=en",
"1850_1859": _BASE_URL + "a6a44ea8-8d33-4880-8b17-f89c90e3d89a?locale=en",
"1860_1869": _BASE_URL + "2e17f00f-52e6-4259-962c-b88ad60dec23?locale=en",
"1870_1879": _BASE_URL + "899c3719-030c-4517-abd3-b28fdc85eed4?locale=en",
"1880_1889": _BASE_URL + "ec3b8545-775b-47bd-885d-ce895263709e?locale=en",
"1890_1899": _BASE_URL + "54ed2842-089a-439a-b751-2179b3ffba28?locale=en",
}
_ALL = list(_DATA_URLS.values())
_1800_1899 = [
_DATA_URLS.get(subset)
for subset in [
"1800_1809",
"1810_1819",
"1820_1829",
"1830_1839",
"1840_1849",
"1850_1859",
"1860_1869",
"1870_1879",
"1880_1889",
"1890_1899",
]
]
_1700_1799 = [_DATA_URLS.get(subset) for subset in ["1700_1799"]]
_1510_1699 = [_DATA_URLS.get(subset) for subset in ["1510_1699"]]
URL = "https://doi.org/10.23636/r7w6-zy15"
features = datasets.Features(
{
"record_id": datasets.Value("string"),
"date": datasets.Value("timestamp[s]"),
"raw_date": datasets.Value("string"),
"title": datasets.Value("string"),
"place": datasets.Value("string"),
"empty_pg": datasets.Value("bool"),
"text": datasets.Value("string"),
"pg": datasets.Value("int32"),
"mean_wc_ocr": datasets.Value("float32"),
"std_wc_ocr": datasets.Value("float64"),
"name": datasets.Value("string"),
"all_names": datasets.Value("string"),
"Publisher": datasets.Value("string"),
"Country of publication 1": datasets.Value("string"),
"all Countries of publication": datasets.Value("string"),
"Physical description": datasets.Value("string"),
"Language_1": datasets.Value("string"),
"Language_2": datasets.Value("string"),
"Language_3": datasets.Value("string"),
"Language_4": datasets.Value("string"),
"multi_language": datasets.Value("bool"),
}
)
class BritishLibraryBooksConfig(datasets.BuilderConfig):
"""BuilderConfig for BritishLibraryBooks."""
def __init__(self, data_urls, citation, url, skip_empty=False, **kwargs):
"""BuilderConfig for BritishLibraryBooks.
Args:
data_url: `string`, url to download the zip file from.
citation: `string`, citation for the data set.
url: `string`, url for information about the data set.
skip_empty: `bool`, whether to skip empty pages.
**kwargs: keyword arguments forwarded to super.
"""
super(BritishLibraryBooksConfig, self).__init__(version=datasets.Version("1.0.2"), **kwargs)
self.url: str = url
self.data_urls: List[str] = data_urls
self.citation: str = citation
self.skip_empty: bool = skip_empty
class BritishLibraryBooks(datasets.GeneratorBasedBuilder):
"""The BritishLibraryBooks dataset."""
BUILDER_CONFIGS = [
BritishLibraryBooksConfig(
name="1500_1899",
description="All periods of" + _DESCRIPTION,
data_urls=_ALL,
citation=_CITATION,
url=URL,
skip_empty=True,
),
BritishLibraryBooksConfig(
name="1800_1899",
description="A subset covering texts published during the 1800-1899 of" + _DESCRIPTION,
data_urls=_1800_1899,
citation=_CITATION,
url=URL,
skip_empty=True,
),
BritishLibraryBooksConfig(
name="1700_1799",
description="Subset covering 1700-1799 of" + _DESCRIPTION,
data_urls=_1700_1799,
citation=_CITATION,
url=URL,
skip_empty=True,
),
BritishLibraryBooksConfig(
name="1510_1699",
description="Subset covering 1510-1699 of " + _DESCRIPTION,
data_urls=_1510_1699,
citation=_CITATION,
url=URL,
skip_empty=True,
),
]
DEFAULT_CONFIG_NAME = "1500_1899"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage="https://www.bl.uk/collection-guides/digitised-printed-books",
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
urls_to_download = self.config.data_urls
downloaded_archives = dl_manager.download(urls_to_download)
downloaded_archives = [dl_manager.iter_archive(archive) for archive in downloaded_archives]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"data_dirs": downloaded_archives})]
@lru_cache(maxsize=512)
def _parse_date(self, date):
if date is not None:
date = datetime.strptime(str(date), "%Y")
return date
def _parse_data(self, data: Dict) -> Dict:
mean_wc_ocr = data["mean_wc_ocr"]
mean_wc_ocr = float(mean_wc_ocr) if mean_wc_ocr else None
std_wc_ocr = data["std_wc_ocr"]
std_wc_ocr = float(data["std_wc_ocr"]) if std_wc_ocr else None
date = data["date"]
if date is not None:
date = datetime.strptime(str(date), "%Y")
return {
"record_id": data["record_id"],
"date": date,
"raw_date": data["raw_date"],
"title": data["title"],
"place": data["place"],
"text": data["text"],
"pg": int(data["pg"]),
"mean_wc_ocr": data["mean_wc_ocr"],
"std_wc_ocr": std_wc_ocr,
"name": data["Name"],
"all_names": data["All names"],
"Publisher": data["Publisher"],
"Country of publication 1": data["Country of publication 1"],
"all Countries of publication": data["All Countries of publication"],
"Physical description": data["Physical description"],
"Language_1": data["Language_1"],
"Language_2": data["Language_2"],
"Language_3": data["Language_3"],
"Language_4": data["Language_4"],
"multi_language": data["multi_language"],
}
def _generate_examples(self, data_dirs):
skip_empty = self.config.skip_empty
id_ = 0
for data_dir in data_dirs:
for path, file in data_dir:
if not path.endswith(".gz"):
continue
with gzip.open(file) as json_l:
for row in json_l:
data = json.loads(row)
empty_pg = data["empty_pg"]
if skip_empty and empty_pg:
continue
parsed_data = self._parse_data(data)
yield id_, {**parsed_data, **{"empty_pg": empty_pg}}
id_ += 1
|