File size: 8,843 Bytes
3c0072d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# coding=utf-8
# Copyright 2022 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gzip
import json
from datetime import datetime
from functools import lru_cache
from typing import Dict, List

import datasets


_CITATION = """\
@misc{BritishLibraryBooks2021,
  author = {British Library Labs},
  title = {Digitised Books. c. 1510 - c. 1900. JSONL (OCR derived text + metadata)},
  year = {2021},
  publisher = {British Library},
  howpublished={https://doi.org/10.23636/r7w6-zy15}
"""

_DESCRIPTION = """\
A dataset comprising of text created by OCR from the 49,455 digitised books, equating to 65,227 volumes (25+ million pages), published between c. 1510 - c. 1900.
The books cover a wide range of subject areas including philosophy, history, poetry and literature.
"""

_BASE_URL = "https://bl.iro.bl.uk/downloads/"


_DATA_URLS = {
    "1510_1699": _BASE_URL + "61f58234-b370-422f-8591-8f98e46c2757?locale=en",
    "1700_1799": _BASE_URL + "78b4a8ec-395e-4383-831c-809faff85ad7?locale=en",
    "1800_1809": _BASE_URL + "91ae15cb-e08f-4abf-8396-e4742d9d4e37?locale=en",
    "1810_1819": _BASE_URL + "6d1a6e17-f28d-45b9-8f7a-a03cf3a96491?locale=en",
    "1820_1829": _BASE_URL + "ec764dbd-1ed4-4fc2-8668-b4df5c8ec451?locale=en",
    "1830_1839": _BASE_URL + "eab68022-0418-4df7-a401-78972514ed20?locale=en",
    "1840_1849": _BASE_URL + "d16d88b0-aa3f-4dfe-b728-c58d168d7b4d?locale=en",
    "1850_1859": _BASE_URL + "a6a44ea8-8d33-4880-8b17-f89c90e3d89a?locale=en",
    "1860_1869": _BASE_URL + "2e17f00f-52e6-4259-962c-b88ad60dec23?locale=en",
    "1870_1879": _BASE_URL + "899c3719-030c-4517-abd3-b28fdc85eed4?locale=en",
    "1880_1889": _BASE_URL + "ec3b8545-775b-47bd-885d-ce895263709e?locale=en",
    "1890_1899": _BASE_URL + "54ed2842-089a-439a-b751-2179b3ffba28?locale=en",
}

_ALL = list(_DATA_URLS.values())
_1800_1899 = [
    _DATA_URLS.get(subset)
    for subset in [
        "1800_1809",
        "1810_1819",
        "1820_1829",
        "1830_1839",
        "1840_1849",
        "1850_1859",
        "1860_1869",
        "1870_1879",
        "1880_1889",
        "1890_1899",
    ]
]
_1700_1799 = [_DATA_URLS.get(subset) for subset in ["1700_1799"]]
_1510_1699 = [_DATA_URLS.get(subset) for subset in ["1510_1699"]]

URL = "https://doi.org/10.23636/r7w6-zy15"

features = datasets.Features(
    {
        "record_id": datasets.Value("string"),
        "date": datasets.Value("timestamp[s]"),
        "raw_date": datasets.Value("string"),
        "title": datasets.Value("string"),
        "place": datasets.Value("string"),
        "empty_pg": datasets.Value("bool"),
        "text": datasets.Value("string"),
        "pg": datasets.Value("int32"),
        "mean_wc_ocr": datasets.Value("float32"),
        "std_wc_ocr": datasets.Value("float64"),
        "name": datasets.Value("string"),
        "all_names": datasets.Value("string"),
        "Publisher": datasets.Value("string"),
        "Country of publication 1": datasets.Value("string"),
        "all Countries of publication": datasets.Value("string"),
        "Physical description": datasets.Value("string"),
        "Language_1": datasets.Value("string"),
        "Language_2": datasets.Value("string"),
        "Language_3": datasets.Value("string"),
        "Language_4": datasets.Value("string"),
        "multi_language": datasets.Value("bool"),
    }
)


class BritishLibraryBooksConfig(datasets.BuilderConfig):
    """BuilderConfig for BritishLibraryBooks."""

    def __init__(self, data_urls, citation, url, skip_empty=False, **kwargs):
        """BuilderConfig for BritishLibraryBooks.

        Args:
        data_url: `string`, url to download the zip file from.
        citation: `string`, citation for the data set.
        url: `string`, url for information about the data set.
        skip_empty: `bool`, whether to skip empty pages.
        **kwargs: keyword arguments forwarded to super.
        """

        super(BritishLibraryBooksConfig, self).__init__(version=datasets.Version("1.0.2"), **kwargs)
        self.url: str = url
        self.data_urls: List[str] = data_urls
        self.citation: str = citation
        self.skip_empty: bool = skip_empty


class BritishLibraryBooks(datasets.GeneratorBasedBuilder):
    """The BritishLibraryBooks dataset."""

    BUILDER_CONFIGS = [
        BritishLibraryBooksConfig(
            name="1500_1899",
            description="All periods of" + _DESCRIPTION,
            data_urls=_ALL,
            citation=_CITATION,
            url=URL,
            skip_empty=True,
        ),
        BritishLibraryBooksConfig(
            name="1800_1899",
            description="A subset covering texts published during the 1800-1899 of" + _DESCRIPTION,
            data_urls=_1800_1899,
            citation=_CITATION,
            url=URL,
            skip_empty=True,
        ),
        BritishLibraryBooksConfig(
            name="1700_1799",
            description="Subset covering 1700-1799 of" + _DESCRIPTION,
            data_urls=_1700_1799,
            citation=_CITATION,
            url=URL,
            skip_empty=True,
        ),
        BritishLibraryBooksConfig(
            name="1510_1699",
            description="Subset covering 1510-1699 of " + _DESCRIPTION,
            data_urls=_1510_1699,
            citation=_CITATION,
            url=URL,
            skip_empty=True,
        ),
    ]

    DEFAULT_CONFIG_NAME = "1500_1899"

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage="https://www.bl.uk/collection-guides/digitised-printed-books",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager):
        urls_to_download = self.config.data_urls
        downloaded_archives = dl_manager.download(urls_to_download)
        downloaded_archives = [dl_manager.iter_archive(archive) for archive in downloaded_archives]
        return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"data_dirs": downloaded_archives})]

    @lru_cache(maxsize=512)
    def _parse_date(self, date):
        if date is not None:
            date = datetime.strptime(str(date), "%Y")
        return date

    def _parse_data(self, data: Dict) -> Dict:
        mean_wc_ocr = data["mean_wc_ocr"]
        mean_wc_ocr = float(mean_wc_ocr) if mean_wc_ocr else None
        std_wc_ocr = data["std_wc_ocr"]
        std_wc_ocr = float(data["std_wc_ocr"]) if std_wc_ocr else None
        date = data["date"]
        if date is not None:
            date = datetime.strptime(str(date), "%Y")
        return {
            "record_id": data["record_id"],
            "date": date,
            "raw_date": data["raw_date"],
            "title": data["title"],
            "place": data["place"],
            "text": data["text"],
            "pg": int(data["pg"]),
            "mean_wc_ocr": data["mean_wc_ocr"],
            "std_wc_ocr": std_wc_ocr,
            "name": data["Name"],
            "all_names": data["All names"],
            "Publisher": data["Publisher"],
            "Country of publication 1": data["Country of publication 1"],
            "all Countries of publication": data["All Countries of publication"],
            "Physical description": data["Physical description"],
            "Language_1": data["Language_1"],
            "Language_2": data["Language_2"],
            "Language_3": data["Language_3"],
            "Language_4": data["Language_4"],
            "multi_language": data["multi_language"],
        }

    def _generate_examples(self, data_dirs):
        skip_empty = self.config.skip_empty
        id_ = 0
        for data_dir in data_dirs:
            for path, file in data_dir:
                if not path.endswith(".gz"):
                    continue
                with gzip.open(file) as json_l:
                    for row in json_l:
                        data = json.loads(row)
                        empty_pg = data["empty_pg"]
                        if skip_empty and empty_pg:
                            continue
                        parsed_data = self._parse_data(data)
                        yield id_, {**parsed_data, **{"empty_pg": empty_pg}}
                        id_ += 1