Commit
·
a4a7178
1
Parent(s):
ea649c0
simple is working but not properly tested
Browse files- Stab-Gurevych-Essays.py +464 -0
Stab-Gurevych-Essays.py
ADDED
@@ -0,0 +1,464 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# TODO: Address all TODOs and remove all explanatory comments
|
15 |
+
"""TODO: Add a description here."""
|
16 |
+
|
17 |
+
|
18 |
+
import csv
|
19 |
+
import json
|
20 |
+
import os
|
21 |
+
import re
|
22 |
+
import tempfile
|
23 |
+
import urllib
|
24 |
+
import requests
|
25 |
+
from pathlib import Path
|
26 |
+
from zipfile import ZipFile
|
27 |
+
|
28 |
+
import datasets
|
29 |
+
|
30 |
+
# TODO: Add BibTeX citation
|
31 |
+
# Find for instance the citation on arxiv or on the dataset repo/website
|
32 |
+
_CITATION = """\
|
33 |
+
@InProceedings{huggingface:dataset,
|
34 |
+
title = {A great new dataset},
|
35 |
+
author={huggingface, Inc.
|
36 |
+
},
|
37 |
+
year={2020}
|
38 |
+
}
|
39 |
+
"""
|
40 |
+
|
41 |
+
# TODO: Add description of the dataset here
|
42 |
+
# You can copy an official description
|
43 |
+
_DESCRIPTION = """\
|
44 |
+
This dataset contains 402 argumentative essays from non-native
|
45 |
+
"""
|
46 |
+
|
47 |
+
# TODO: Add a link to an official homepage for the dataset here
|
48 |
+
_HOMEPAGE = ""
|
49 |
+
|
50 |
+
# TODO: Add the licence for the dataset here if you can find it
|
51 |
+
_LICENSE = ""
|
52 |
+
|
53 |
+
# TODO: Add link to the official dataset URLs here
|
54 |
+
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
55 |
+
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
56 |
+
_URLS = {
|
57 |
+
"tu_darmstadt": "https://tudatalib.ulb.tu-darmstadt.de/bitstream/handle/tudatalib/2422/ArgumentAnnotatedEssays-2.0.zip?sequence=1&isAllowed=y",
|
58 |
+
}
|
59 |
+
|
60 |
+
|
61 |
+
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
62 |
+
class NewDataset(datasets.GeneratorBasedBuilder):
|
63 |
+
"""TODO: Short description of my dataset."""
|
64 |
+
|
65 |
+
VERSION = datasets.Version("1.1.0")
|
66 |
+
|
67 |
+
temp_dir = tempfile.TemporaryDirectory()
|
68 |
+
|
69 |
+
# This is an example of a dataset with multiple configurations.
|
70 |
+
# If you don't want/need to define several sub-sets in your dataset,
|
71 |
+
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
72 |
+
|
73 |
+
# If you need to make complex sub-parts in the datasets with configurable options
|
74 |
+
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
75 |
+
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
76 |
+
|
77 |
+
# You will be able to load one or the other configurations in the following list with
|
78 |
+
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
79 |
+
BUILDER_CONFIGS = [
|
80 |
+
datasets.BuilderConfig(
|
81 |
+
name="full_labels",
|
82 |
+
version=VERSION,
|
83 |
+
description="get all the data conveyed by the labels, O, B-Claim, I-Claim, etc.",
|
84 |
+
),
|
85 |
+
datasets.BuilderConfig(
|
86 |
+
name="spans",
|
87 |
+
version=VERSION,
|
88 |
+
description="get the spans, O, B-Span, I-Span.",
|
89 |
+
),
|
90 |
+
datasets.BuilderConfig(
|
91 |
+
name="simple",
|
92 |
+
version=VERSION,
|
93 |
+
description="get the labels without B/I, O, MajorClaim, Claim, Premise",
|
94 |
+
),
|
95 |
+
datasets.BuilderConfig(
|
96 |
+
name="sep_tok",
|
97 |
+
version=VERSION,
|
98 |
+
description="get the labels without B/I, meaning O, Claim, Premise"
|
99 |
+
+ ", etc.\n insert seperator tokens <s> ... </s>",
|
100 |
+
),
|
101 |
+
datasets.BuilderConfig(
|
102 |
+
name="sep_tok_full_labels",
|
103 |
+
version=VERSION,
|
104 |
+
description="get the labels with B/I, meaning O, I-Claim, I-Premise"
|
105 |
+
+ ", etc.\n insert seperator tokens <s> ... </s>",
|
106 |
+
),
|
107 |
+
]
|
108 |
+
|
109 |
+
DEFAULT_CONFIG_NAME = "full_labels" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
110 |
+
|
111 |
+
def _info(self):
|
112 |
+
# This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
113 |
+
if (
|
114 |
+
self.config.name == "full_labels"
|
115 |
+
): # This is the name of the configuration selected in BUILDER_CONFIGS above
|
116 |
+
features = datasets.Features(
|
117 |
+
{
|
118 |
+
"id": datasets.Value("int16"),
|
119 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
120 |
+
"ner_tags": datasets.Sequence(
|
121 |
+
datasets.ClassLabel(
|
122 |
+
names=[
|
123 |
+
"O",
|
124 |
+
"B-MajorClaim",
|
125 |
+
"I-MajorClaim",
|
126 |
+
"B-Claim",
|
127 |
+
"I-Claim",
|
128 |
+
"B-Premise",
|
129 |
+
"I-Premise",
|
130 |
+
]
|
131 |
+
)
|
132 |
+
),
|
133 |
+
"text": datasets.Value("string"),
|
134 |
+
"span_begins": datasets.Sequence(datasets.Value("int16")),
|
135 |
+
"span_ends": datasets.Sequence(datasets.Value("int16")),
|
136 |
+
}
|
137 |
+
)
|
138 |
+
elif (
|
139 |
+
self.config.name == "spans"
|
140 |
+
): # This is an example to show how to have different features for "first_domain" and "second_domain"
|
141 |
+
features = datasets.Features(
|
142 |
+
{
|
143 |
+
"id": datasets.Value("int16"),
|
144 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
145 |
+
"ner_tags": datasets.Sequence(
|
146 |
+
datasets.ClassLabel(
|
147 |
+
names=[
|
148 |
+
"O",
|
149 |
+
"B",
|
150 |
+
"I",
|
151 |
+
]
|
152 |
+
)
|
153 |
+
),
|
154 |
+
"text": datasets.Value("string"),
|
155 |
+
"span_begins": datasets.Sequence(datasets.Value("int16")),
|
156 |
+
"span_ends": datasets.Sequence(datasets.Value("int16")),
|
157 |
+
}
|
158 |
+
)
|
159 |
+
elif (
|
160 |
+
self.config.name == "simple"
|
161 |
+
): # This is an example to show how to have different features for "first_domain" and "second_domain"
|
162 |
+
features = datasets.Features(
|
163 |
+
{
|
164 |
+
"id": datasets.Value("int16"),
|
165 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
166 |
+
"ner_tags": datasets.Sequence(
|
167 |
+
datasets.ClassLabel(
|
168 |
+
names=[
|
169 |
+
"O",
|
170 |
+
"X_placeholder_X",
|
171 |
+
"MajorClaim",
|
172 |
+
"Claim",
|
173 |
+
"Premise",
|
174 |
+
]
|
175 |
+
)
|
176 |
+
),
|
177 |
+
"text": datasets.Value("string"),
|
178 |
+
"span_begins": datasets.Sequence(datasets.Value("int16")),
|
179 |
+
"span_ends": datasets.Sequence(datasets.Value("int16")),
|
180 |
+
}
|
181 |
+
)
|
182 |
+
elif self.config.name == "sep_tok":
|
183 |
+
features = datasets.Features(
|
184 |
+
{
|
185 |
+
"id": datasets.Value("int16"),
|
186 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
187 |
+
"ner_tags": datasets.Sequence(
|
188 |
+
datasets.ClassLabel(
|
189 |
+
names=[
|
190 |
+
"O",
|
191 |
+
"X_placeholder_X",
|
192 |
+
"MajorClaim",
|
193 |
+
"Claim",
|
194 |
+
"Premise",
|
195 |
+
]
|
196 |
+
)
|
197 |
+
),
|
198 |
+
"text": datasets.Value("string"),
|
199 |
+
"span_begins": datasets.Sequence(datasets.Value("int16")),
|
200 |
+
"span_ends": datasets.Sequence(datasets.Value("int16")),
|
201 |
+
}
|
202 |
+
)
|
203 |
+
elif self.config.name == "sep_tok_full_labels":
|
204 |
+
features = datasets.Features(
|
205 |
+
{
|
206 |
+
"id": datasets.Value("int16"),
|
207 |
+
"tokens": datasets.Sequence(datasets.Value("string")),
|
208 |
+
"ner_tags": datasets.Sequence(
|
209 |
+
datasets.ClassLabel(
|
210 |
+
names=[
|
211 |
+
"O",
|
212 |
+
"B-MajorClaim",
|
213 |
+
"I-MajorClaim",
|
214 |
+
"B-Claim",
|
215 |
+
"I-Claim",
|
216 |
+
"B-Premise",
|
217 |
+
"I-Premise",
|
218 |
+
]
|
219 |
+
)
|
220 |
+
),
|
221 |
+
"text": datasets.Value("string"),
|
222 |
+
"span_begins": datasets.Sequence(datasets.Value("int16")),
|
223 |
+
"span_ends": datasets.Sequence(datasets.Value("int16")),
|
224 |
+
}
|
225 |
+
)
|
226 |
+
|
227 |
+
return datasets.DatasetInfo(
|
228 |
+
# This is the description that will appear on the datasets page.
|
229 |
+
description=_DESCRIPTION,
|
230 |
+
# This defines the different columns of the dataset and their types
|
231 |
+
features=features, # Here we define them above because they are different between the two configurations
|
232 |
+
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
233 |
+
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
234 |
+
# supervised_keys=("sentence", "label"),
|
235 |
+
# Homepage of the dataset for documentation
|
236 |
+
homepage=_HOMEPAGE,
|
237 |
+
# License for the dataset if available
|
238 |
+
license=_LICENSE,
|
239 |
+
# Citation for the dataset
|
240 |
+
citation=_CITATION,
|
241 |
+
)
|
242 |
+
|
243 |
+
def __load_data(self):
|
244 |
+
# set up paths
|
245 |
+
save_dir = Path(self.temp_dir.name)
|
246 |
+
save_file = Path("essays.zip")
|
247 |
+
|
248 |
+
# get url to data
|
249 |
+
url = _URLS["tu_darmstadt"]
|
250 |
+
# download data
|
251 |
+
r = requests.get(url, stream=True)
|
252 |
+
# save data to temporary dir
|
253 |
+
with open(save_dir / save_file, 'wb') as fd:
|
254 |
+
for chunk in r.iter_content(chunk_size=128):
|
255 |
+
fd.write(chunk)
|
256 |
+
# recursively unzip files
|
257 |
+
for glob_path in save_dir.rglob("*.zip"):
|
258 |
+
with ZipFile(glob_path, 'r') as zip_ref:
|
259 |
+
zip_ref.extractall(glob_path.parent)
|
260 |
+
return save_dir
|
261 |
+
|
262 |
+
def __range_generator(self, train=0.8, test=0.2):
|
263 |
+
"""
|
264 |
+
returns three range objects to access the list of essays
|
265 |
+
these are the train, test, and validate range, where the size of the
|
266 |
+
validation range is dictated by the other two ranges
|
267 |
+
"""
|
268 |
+
# START RANGE AT 1!!!
|
269 |
+
return (
|
270 |
+
range(1, int(403 * train)), # train
|
271 |
+
range(int(403 * train), int(403 * (train + test))), # test
|
272 |
+
range(int(403 * (train + test)), 403), # validate
|
273 |
+
)
|
274 |
+
|
275 |
+
def _split_generators(self, _):
|
276 |
+
data_dir = self.__load_data()
|
277 |
+
|
278 |
+
# this dataset will return a "train" split only, allowing for
|
279 |
+
# 5-fold cross-validation
|
280 |
+
train, test, validate = self.__range_generator(0.7, 0.2)
|
281 |
+
# essays = self._get_essay_list()
|
282 |
+
|
283 |
+
if len(validate) > 0 and len(test) > 0:
|
284 |
+
return [
|
285 |
+
datasets.SplitGenerator(
|
286 |
+
name=datasets.Split.TRAIN,
|
287 |
+
# These kwargs will be passed to _generate_examples
|
288 |
+
gen_kwargs={
|
289 |
+
"data_dir": data_dir,
|
290 |
+
"id_range": train,
|
291 |
+
},
|
292 |
+
),
|
293 |
+
datasets.SplitGenerator(
|
294 |
+
name=datasets.Split.VALIDATION,
|
295 |
+
# These kwargs will be passed to _generate_examples
|
296 |
+
gen_kwargs={
|
297 |
+
"data_dir": data_dir,
|
298 |
+
"id_range": validate,
|
299 |
+
},
|
300 |
+
),
|
301 |
+
datasets.SplitGenerator(
|
302 |
+
name=datasets.Split.TEST,
|
303 |
+
# These kwargs will be passed to _generate_examples
|
304 |
+
gen_kwargs={
|
305 |
+
"data_dir": data_dir,
|
306 |
+
"id_range": test,
|
307 |
+
},
|
308 |
+
),
|
309 |
+
]
|
310 |
+
elif len(test) > 0:
|
311 |
+
return [
|
312 |
+
datasets.SplitGenerator(
|
313 |
+
name=datasets.Split.TRAIN,
|
314 |
+
# These kwargs will be passed to _generate_examples
|
315 |
+
gen_kwargs={
|
316 |
+
"data_dir": data_dir,
|
317 |
+
"id_range": train,
|
318 |
+
},
|
319 |
+
),
|
320 |
+
datasets.SplitGenerator(
|
321 |
+
name=datasets.Split.TEST,
|
322 |
+
# These kwargs will be passed to _generate_examples
|
323 |
+
gen_kwargs={
|
324 |
+
"data_dir": data_dir,
|
325 |
+
"id_range": test,
|
326 |
+
},
|
327 |
+
),
|
328 |
+
]
|
329 |
+
elif len(validate) > 0:
|
330 |
+
return [
|
331 |
+
datasets.SplitGenerator(
|
332 |
+
name=datasets.Split.TRAIN,
|
333 |
+
# These kwargs will be passed to _generate_examples
|
334 |
+
gen_kwargs={
|
335 |
+
"data_dir": data_dir,
|
336 |
+
"id_range": train,
|
337 |
+
},
|
338 |
+
),
|
339 |
+
datasets.SplitGenerator(
|
340 |
+
name=datasets.Split.VALIDATION,
|
341 |
+
# These kwargs will be passed to _generate_examples
|
342 |
+
gen_kwargs={
|
343 |
+
"data_dir": data_dir,
|
344 |
+
"id_range": validate,
|
345 |
+
},
|
346 |
+
),
|
347 |
+
]
|
348 |
+
else:
|
349 |
+
return [
|
350 |
+
datasets.SplitGenerator(
|
351 |
+
name=datasets.Split.TRAIN,
|
352 |
+
# These kwargs will be passed to _generate_examples
|
353 |
+
gen_kwargs={
|
354 |
+
"data_dir": data_dir,
|
355 |
+
"id_range": train,
|
356 |
+
},
|
357 |
+
),
|
358 |
+
]
|
359 |
+
|
360 |
+
def _get_essay(self, id: int, data_dir: Path):
|
361 |
+
return data_dir.joinpath(f"essay{str(id).rjust(3, '0')}.txt").read_text(), data_dir.joinpath(f"essay{str(id).rjust(3, '0')}.ann").read_text()
|
362 |
+
|
363 |
+
def _parse_raw_ann(self, raw_ann: str):
|
364 |
+
raw_anns = raw_ann.split("\n")
|
365 |
+
clean_anns = []
|
366 |
+
for cur_raw_ann in raw_anns:
|
367 |
+
matches = re.match(r".+\t(.+) (.+) (.+)\t(.+)", cur_raw_ann)
|
368 |
+
if matches is not None:
|
369 |
+
clean_anns.append(
|
370 |
+
(matches.group(1), int(matches.group(2)), int(matches.group(3)), matches.group(4))
|
371 |
+
)
|
372 |
+
# sorting spans by start before returningbefore returning
|
373 |
+
return sorted(clean_anns, key=lambda x: x[1])
|
374 |
+
|
375 |
+
def _tokenise(self, text, clean_anns):
|
376 |
+
# find spans
|
377 |
+
previous_end = 0
|
378 |
+
spans = []
|
379 |
+
# for every span, add the not span that is before it
|
380 |
+
for clean_ann in clean_anns:
|
381 |
+
spans.append(("O", text[previous_end:clean_ann[1]]))
|
382 |
+
spans.append((clean_ann[0], text[clean_ann[1]:clean_ann[2]]))
|
383 |
+
# if were picking up the wrong text...
|
384 |
+
if spans[-1][1] != clean_ann[3]:
|
385 |
+
print(spans[-1][1])
|
386 |
+
input(clean_ann[3])
|
387 |
+
previous_end = clean_ann[2]
|
388 |
+
# add whatever is left over to not spans
|
389 |
+
spans.append(("O", text[previous_end:]))
|
390 |
+
|
391 |
+
tokens = []
|
392 |
+
labels = []
|
393 |
+
# tokenise spans
|
394 |
+
for span in spans:
|
395 |
+
span_tokens = span[1].split()
|
396 |
+
label = span[0]
|
397 |
+
if self.config.name == "simple":
|
398 |
+
# with simple, the token is already correct
|
399 |
+
pass
|
400 |
+
elif self.config.name == "sep_tok":
|
401 |
+
# with sep_tok, the token is correct, but a sep top needs to be inserted
|
402 |
+
pass
|
403 |
+
# TODO: make sure to include the sep tok!!!
|
404 |
+
elif self.config.name == "spans":
|
405 |
+
if label != "O":
|
406 |
+
label = "I"
|
407 |
+
# TODO: make sure to iclude the B and the I
|
408 |
+
elif self.config.name == "full_labels":
|
409 |
+
# TODO: ensure I and B
|
410 |
+
pass
|
411 |
+
elif self.config.name == "sep_tok_full_labels":
|
412 |
+
# TODO: ensure I and B
|
413 |
+
# TODO: make sure to include the sep tok!!!
|
414 |
+
pass
|
415 |
+
labels.append([label] * len(span_tokens))
|
416 |
+
tokens.append(span_tokens)
|
417 |
+
|
418 |
+
# flatten list of lists of labels before return
|
419 |
+
labels = [ label for inner_list in labels for label in inner_list ]
|
420 |
+
return tokens, labels
|
421 |
+
|
422 |
+
def _process_essay(self, id, data_dir: Path):
|
423 |
+
# TODO: get the logic in here. everything else it taken care of i think
|
424 |
+
text, raw_ann = self._get_essay(id, data_dir)
|
425 |
+
clean_anns = self._parse_raw_ann(raw_ann)
|
426 |
+
tokens, labels = self._tokenise(text, clean_anns)
|
427 |
+
|
428 |
+
|
429 |
+
# id = self._get_id(essay)
|
430 |
+
# # input(id)
|
431 |
+
# tokens = self._get_tokens(essay)
|
432 |
+
# # input(tokens)
|
433 |
+
# label_dict = self._get_label_dict(essay)
|
434 |
+
# # input(label_dict)
|
435 |
+
# tokens, labels, begins, ends = self._match_tokens(tokens, label_dict)
|
436 |
+
# # input(tokens)
|
437 |
+
# # input(labels)
|
438 |
+
# text = self._get_text(essay)
|
439 |
+
|
440 |
+
# id = 1
|
441 |
+
# tokens = ["1"]
|
442 |
+
# labels = [1]
|
443 |
+
# text = "a"
|
444 |
+
# begins = [1]
|
445 |
+
# ends = [2]
|
446 |
+
return {
|
447 |
+
"id": id,
|
448 |
+
"tokens": tokens,
|
449 |
+
"ner_tags": labels,
|
450 |
+
"text": text,
|
451 |
+
"span_begins": [ann[1] for ann in clean_anns],
|
452 |
+
"span_ends": [ann[2] for ann in clean_anns],
|
453 |
+
}
|
454 |
+
|
455 |
+
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
456 |
+
def _generate_examples(self, data_dir: Path, id_range: list):
|
457 |
+
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
458 |
+
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
459 |
+
|
460 |
+
data_dir = data_dir.joinpath("ArgumentAnnotatedEssays-2.0", "brat-project-final")
|
461 |
+
|
462 |
+
for id in id_range:
|
463 |
+
# input(data[id])
|
464 |
+
yield id, self._process_essay(id, data_dir)
|