problem_id
stringlengths
6
6
user_id
stringlengths
10
10
time_limit
float64
1k
8k
memory_limit
float64
262k
1.05M
problem_description
stringlengths
48
1.55k
codes
stringlengths
35
98.9k
status
stringlengths
28
1.7k
submission_ids
stringlengths
28
1.41k
memories
stringlengths
13
808
cpu_times
stringlengths
11
610
code_sizes
stringlengths
7
505
p02572
u347640436
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
["l = input()\na = l.split(' ')\n\ntmp = 0\ntmp2 = 0\n\nfor i in range(n):\n tmp += int(a[i])\n\nfor i in range(n):\n tmp2 += int(a[i])*int(a[i])\n\nprint((tmp*tmp-tmp2)//2%1000000007)", 'm = 1000000007\n\nN, *A = map(int, open(0).read().split())\n\nresult = 0\nc = 0\nfor i in range(1, N + 1):\n result += c * A[N - i]\n result %= m\n c += A[N - i]\n c %= m\nprint(result)\n']
['Runtime Error', 'Accepted']
['s568756935', 's321626917']
[9108.0, 31524.0]
[24.0, 167.0]
[176, 187]
p02572
u348293370
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['from C import ans\n\n\nn = int(input())\nn_list = [int(i) for i in input().split()]\n\ns = sum(a**2 for a in n_list)\nans = sum(n_list) ** 2 - s\n\nprint((ans//2)%(10**9+7))', 'n = int(input())\nn_list = [int(i) for i in input().split()]\n\ns = sum(a**2 for a in n_list)\nans = sum(n_list) ** 2 - s\n\nprint((ans//2)%(10**9+7))']
['Runtime Error', 'Accepted']
['s629547737', 's762687124']
[9052.0, 31716.0]
[25.0, 128.0]
[164, 144]
p02572
u354174235
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['int_n = int(input())\nlist_tmp = list(map(int, input().split()))\n\nprint(int_n, list_tmp)\n\nint_sum = 0\nint_divide = (10**9) + 7\n\nfor i in range(0, len(list_tmp) - 1):\n for j in range(i + 1, len(list_tmp)):\n #print(i, j)\n # print(list_tmp[i] * list_tmp[j])\n int_sum = ((int_sum + (list_tmp[i] * list_tmp[j])) % int_divide) #((list_tmp[i] * list_tmp[j]) )\n#print(int_sum)\nprint(int_sum)', '\nint_n = int(input())\nlist_tmp = list(map(int, input().split()))\n \nint_sum = 0\nint_divide = (10**9) + 7\nint_sum_tmp = sum(list_tmp)\n\nfor i in range(0, len(list_tmp) - 1):\n int_sum_tmp = int_sum_tmp - list_tmp[i]\n int_sum = int_sum + (int_sum_tmp * list_tmp[i])\nprint(int_sum % int_divide)\n# for j in range(i + 1, len(list_tmp)):\n# if list_tmp[i] >= int_divide:\n# list_tmp_i = list_tmp[i]%int_divide\n# else:\n# list_tmp_i = list_tmp[i]\n# \n# if list_tmp[j] >= int_divide:\n# list_tmp_j = list_tmp[j]%int_divide\n# else:\n# list_tmp_j = list_tmp[j] \n# \n\n# \n\n\n# \n#print(int_sum)']
['Wrong Answer', 'Accepted']
['s066746873', 's478948641']
[31432.0, 31656.0]
[2210.0, 124.0]
[392, 779]
p02572
u359752656
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['N = int(input())\nA = list(map(int, input().split()))\nsum = 0\n# temp1 = 0\n# temp2 = 0\nMOD = 1000000007\nfor i in range(0, N-1):\n A[i] = A[i] % MOD\nprint(A)\nfor i in range(0, N-1):\n for j in range(i+1, N):\n #print(i, j)\n temp1 = 0\n temp2 = 0\n temp3 = 0\n # temp1 = A[i] % MOD\n # temp2 = A[j] % MOD\n # temp3 = temp1 * temp2\n temp3 = (A[i] * A[j]) % MOD\n sum = (sum + temp3) % MOD\n\nprint(sum)', 'MOD = 1000000007\nN = int(input())\nA = list(map(int, input().split()))\nans = 0\nB = [0]*(N-1)\nsumA = sum(A)\nfor i in range(1, N):\n sumA -= A[i-1]\n B[i-1] = sumA\nfor i in range(0, N-1):\n ans += A[i] * B[i]\n ans %= MOD\nprint(ans)']
['Wrong Answer', 'Accepted']
['s077588979', 's797163616']
[31312.0, 31676.0]
[2209.0, 181.0]
[471, 237]
p02572
u364741711
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['n = int(input())\na = list(map(int, input().split()))\n\nsum=0\n\nprint(n)\nprint(a)\n\nfor i in range(n) :\n for j in range(n) :\n if i < j :\n sum += a[i]*a[j]\n sum = sum%1000000007\n\nprint(sum)', 'n = int(input())\na = list(map(int, input().split()))\nans = 0\nr_wa = [a[0]]\nfor i in range(n) :\n if i>0 :\n r_wa.append(r_wa[i-1]+a[i])\n\nfor i in range(n-1) :\n ans += a[i]*(r_wa[n-1]-r_wa[i])\n ans = ans%1000000007\nprint(ans)']
['Wrong Answer', 'Accepted']
['s639184296', 's074482372']
[31608.0, 31572.0]
[2209.0, 186.0]
[198, 228]
p02572
u374395860
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['N = int(input())\nA = []\nA += list(map(int,input().split()))\nS = 0\nk = 0\n\nB = A[1:N] \n\nC = []\n\nNum = 0\nDum = 0\nGum = 0\n\nfor i in range(N-1):\n Num = i\n for j in range(Num+1):\n Dum += A[j]\n C.append(Dum)\n Dum = 0\n\nfor k in range(N-1):\n Gum += B[k] * C[k]\n\nprint(B)\nprint(C)\nprint(Gum % 1000000007)', 'N = int(input())\nA = []\nA += list(map(int,input().split()))\nS = 0\nk = 0\n\nDum = 0\nGum = 0\n\nfor i in range(0, N-1):\n Dum += A[i]\n Gum += Dum * A[i+1]\n\nprint(Gum % 1000000007)']
['Wrong Answer', 'Accepted']
['s848473324', 's994714435']
[31468.0, 31604.0]
[2206.0, 129.0]
[331, 178]
p02572
u380791283
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['n = int(input())\nx = list(map(int, input().strip().split()))\nsum=0\nminsum=0\nfor i in range(0,n):\n minsum += x[i]\nfor i in range(0,n-1):\n minsum-=x[i]\n sum += x[i]*minsum\n print(sum)\n if(sum>10**9+7):\n sum%=(10**9+7)\nprint(sum)', 'n = int(input())\nx = list(map(int, input().strip().split()))\nsum=0\nminsum=0\nfor i in range(0,n):\n minsum += x[i]\nfor i in range(0,n-1):\n minsum-=x[i]\n sum += x[i]*minsum\n if(sum>10**9+7):\n sum%=(10**9+7)\nprint(sum)']
['Wrong Answer', 'Accepted']
['s568336013', 's059692230']
[31680.0, 31396.0]
[261.0, 186.0]
[248, 233]
p02572
u392331162
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['def findProductSum(A, n): \n \n # calculating array sum (a1 + a2 ... + an) \n array_sum = 0\n for i in range(0, n, 1): \n array_sum = array_sum + A[i] \n \n # calcualting square of array sum \n # (a1 + a2 + ... + an)^2 \n array_sum_square = array_sum * array_sum \n \n # calcualting a1^2 + a2^2 + ... + an^2 \n individual_square_sum = 0\n for i in range(0, n, 1): \n individual_square_sum += A[i] * A[i] \n \n # required sum is (array_sum_square - \n # individual_square_sum) / 2 \n temp=int(array_sum_square - \n individual_square_sum) / 2\n return temp%1000000007\n\n\n\n\n\n\n\n\nlist=list()\nn=int(input())\nfor i in range(n):\n\tl=int(input())\n\tlist.append(l)\nprint(findProductSum(list,n))\t\n\t', 'def findProductSum(A, n): \n \n # calculating array sum (a1 + a2 ... + an) \n array_sum = 0\n for i in range(0, n, 1): \n array_sum = array_sum + A[i] \n \n # calcualting square of array sum \n # (a1 + a2 + ... + an)^2 \n array_sum_square = array_sum * array_sum \n \n # calcualting a1^2 + a2^2 + ... + an^2 \n individual_square_sum = 0\n for i in range(0, n, 1): \n individual_square_sum += A[i] * A[i] \n \n # required sum is (array_sum_square - \n # individual_square_sum) / 2 \n temp=int(array_sum_square - \n individual_square_sum) / 2\n return temp%1000000007\n\n\n\n\n\n\n\n\nn = int(input())\nl = list(map(int, input().split()))\nprint(findProductSum(l,n))\t\n\t', 'def findProductSum(A, n): \n \n # calculating array sum (a1 + a2 ... + an) \n array_sum = 0\n for i in range(0, n, 1): \n array_sum = array_sum + A[i] \n \n # calcualting square of array sum \n # (a1 + a2 + ... + an)^2 \n array_sum_square = array_sum * array_sum \n \n # calcualting a1^2 + a2^2 + ... + an^2 \n individual_square_sum = 0\n for i in range(0, n, 1): \n individual_square_sum += A[i] * A[i] \n \n # required sum is (array_sum_square - \n # individual_square_sum) / 2 \n temp=int(array_sum_square - \n individual_square_sum) \n temp=temp//2\n return temp%1000000007\n\n\n\n\n\n\n\n\nn = int(input())\nl = list(map(int, input().split()))\nprint(findProductSum(l,n))\t\n\t']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s581453302', 's853809349', 's575162739']
[13296.0, 31612.0, 33012.0]
[39.0, 112.0, 111.0]
[736, 708, 722]
p02572
u401810884
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['from itertools import combinations\nimport math\nN = int(input())\nA = list(map(int, input().split()))\nmod = 1000000007\n\ndef add(a, b):\n return (a + b) % mod\n\ndef mul(a, b):\n return ((a % mod) * (b % mod)) % mod\n\ndef cumsum(xs):\n result = [xs[0]]\n for x in xs[1:]:\n result.append(add(result[-1], x))\n return result\n\n#N = int(input())\n#C = input()\n#D, T, S=map(int,input().split())\n#C = []\n\n# C.append(list(map(int,input().split())))\n\ninv = cumsum(list(reversed(A)))\nc = 0\nfor i in range(0,N-1):\n print(N-i-2)\n c = add(c,mul(A[i],inv[N-i-2]))\n\nprint(c)\n', 'from itertools import combinations\nimport math\nN = int(input())\nA = list(map(int, input().split()))\nmod = 1000000007\n\ndef add(a, b):\n return (a + b) % mod\n\ndef mul(a, b):\n return ((a % mod) * (b % mod)) % mod\n\ndef cumsum(xs):\n result = [xs[0]]\n for x in xs[1:]:\n result.append(add(result[-1], x))\n return result\n\n#N = int(input())\n#C = input()\n#D, T, S=map(int,input().split())\n#C = []\n\n# C.append(list(map(int,input().split())))\n\ninv = cumsum(list(reversed(A)))\nc = 0\nfor i in range(0,N-1):\n c = add(c,mul(A[i],inv[N-i-2]))\n\nprint(c)\n']
['Wrong Answer', 'Accepted']
['s227682196', 's950460922']
[32052.0, 32144.0]
[303.0, 240.0]
[599, 582]
p02572
u402492580
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['N = int(input())\nA = list(map(int, input().split()))\n\nfor i in range(N-1): \n\tfor\tj in range(i+1, N):\n\t\tt = A[i]*A[j] % (10**9+7)\n\t\tsum = sum(t)\n\nprint(sum)', 'N = int(input())\nA = list(map(int, input().split()))\n\nfor i in range(N-1) and j in range(i+1, N):\n\tt = A[i]*A[j] % (10**9+7)\n\tsum = sum(t)\n\nprint(sum)', '#N = int(input())\n#A = list(map(int, input().split()))\nn, a = input().split("\\n")\nN = int(n)\nA = list(map(int, a.split()))\n\nmod = 7 + 10**9\ns = 0\n\nfor i in range(N-1): \n\tfor\tj in range(i+1, N):\n\t\tt = A[i] * A[j] % mod\n\t\ts += t\n\nans = s % mod\nprint(ans)', 'N = int(input())\nA = list(map(int, input().split()))\n\nmod = 7 + 10**9\nfor i in A:\n\tA[i] %= mod\nfor j in range(N-1): \n\tfor\tk in range(j+1, N):\n\t\tt = A[j] * A[k] \n\t\tans += t\n\nans %= mod\nprint(ans)', 'N = int(input())\nA = list(map(int, input().split()))\n\nans = 0\nmod = 7 + 10**9\n\ns = sum(A)\nfor i in range(N):\n\ts -= A[i]\n\tans += s * A[i]\n\tans %= mod\n\nprint(ans)\t']
['Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s001257226', 's041538847', 's053870738', 's548649484', 's508612495']
[31664.0, 31736.0, 9104.0, 31524.0, 31436.0]
[72.0, 76.0, 28.0, 71.0, 151.0]
[155, 150, 252, 194, 161]
p02572
u408375121
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['n = int(input())\na = list(map(int, input().split()))\nmod = 10**9 + 7\ntotal = sum(a)\ntotal %= mod\ntotal = total ** 2\ntotal %= mod\ncnt = 0\nfor i in range(n):\n cnt += a[i]**2\n cnt %= mod\n\nans = total - cnt\nans %= mod\nans *= pow(2, mod - 2)\nans %= mod\nprint(ans)\n \n', 'n = int(input())\na = list(map(int, input().split()))\nmod = 10**9 + 7\ntotal = sum(a)\ntotal %= mod\ntotal = total ** 2\ntotal %= mod\ncnt = 0\nfor i in range(n):\n cnt += a[i]**2\n cnt %= mod\n\nans = total - cnt\nans %= mod\nprint(ans)\n ', 'n = int(input())\na = list(map(int, input().split()))\nmod = 10**9 + 7\ntotal = sum(a)\ntotal = total ** 2\ncnt = 0\nfor i in range(n):\n cnt += a[i]**2\n\nans = (total - cnt) // 2\nans %= mod\n\nprint(ans)\n \n']
['Time Limit Exceeded', 'Wrong Answer', 'Accepted']
['s640215469', 's668446806', 's322421217']
[245052.0, 31736.0, 31504.0]
[2211.0, 152.0, 133.0]
[264, 229, 199]
p02572
u412435828
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['N = int(input())\nA = list(map(int, input().split()))\n\n\n\nA_sum = 0\nfor i in range(0, N, 1):\n A_sum = A_sum + A[i]\n\nA_sum_sq = A_sum * A_sum\n\nidv_sq_sum = 0\nfor i in range(0, N, 1):\n idv_sq_sum += A[i] * A[i]\n\nAnswer = (A_sum_sq -\n idv_sq_sum) / 2\nprint(Answer%(10**9 + 7))', 'N = int(input())\nA = list(map(int, input().split()))\n\n\n\nA_sum = 0\nfor i in range(0, N, 1):\n A_sum = A_sum + A[i]\n\nA_sum_sq = A_sum * A_sum\n\nidv_sq_sum = 0\nfor i in range(0, N, 1):\n idv_sq_sum += A[i] * A[i]\n\nAnswer = (A_sum_sq -\n idv_sq_sum) // 2\nprint(Answer%(10**9 + 7))']
['Wrong Answer', 'Accepted']
['s413825645', 's064254885']
[31596.0, 31432.0]
[140.0, 140.0]
[286, 287]
p02572
u414050834
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['from numba import jit\n@jit\ndef main():\n n=int(input())\n a=list(map(int,input().split()))\n mod=10**9+7\n ans=0\n for i in range(n-1):\n ans=ans+(a[i]*(sum(a[i+1:n])%mod))%mod\n print(ans)\nmain()', 'n=int(input())\na=list(map(int,input().split()))\nmod=10**9+7\nans=0\ns=sum(a[1:n])\nfor i in range(n-1):\n ans=(ans+(a[i]*(s%mod))%mod)%mod\n s=s-a[i+1]\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s680165197', 's908107012']
[134120.0, 31616.0]
[2210.0, 166.0]
[198, 160]
p02572
u420780655
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['def findProductSum(A, n): \n s = 0\n for i in range(n): \n s = s + A[i] \n array_sum_square = s * s \n individual_square_sum = 0\n for i in range(n): \n individual_square_sum += A[i] * A[i] \n return (array_sum_square -individual_square_sum) / 2\nn=int(input())\na=list(map(int,input().split()))\nprint(findProductSum(a,n))', 'M=1000000007\ndef findProductSum(A, n): \n s = 0\n for i in range(n): \n s+=A[i] \n array_sum_square = s*s\n individual_square_sum = 0\n for i in range(n): \n individual_square_sum += A[i]*A[i]\n return (array_sum_square -individual_square_sum) // 2\nn=int(input())\na=list(map(int,input().split()))\nprint(findProductSum(a,n)%M)']
['Wrong Answer', 'Accepted']
['s271931456', 's545714306']
[31488.0, 31336.0]
[107.0, 108.0]
[344, 349]
p02572
u433697974
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['N = int(input())\nA = list(map(int, input().split()))\nans = 0\na = 7 + 10**9 \nfor i in range(N-1):\n for j in range(i+1,N):\n B = A[i] * A[j]\n ans += int(str(B)[-9:]) - 7*int(str(B)[:1])\nprint(ans % a)', 'N = int(input())\nA = list(map(int, input().split()))\na = 0\nans = 0\nmod = 10**9 + 7\nfor i in range(N-1):\n a += A[N-i-1]\n ans += A[N-i-2] * a\nprint(ans%mod)']
['Wrong Answer', 'Accepted']
['s568458910', 's376560953']
[31660.0, 31552.0]
[2206.0, 146.0]
[204, 156]
p02572
u436982376
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['def findProductSum(A, n):\n tmp = (10**9)+7\n\n array_sum = 0\n for i in range(0, n, 1):\n array_sum = array_sum + A[i]\n\n array_sum_square = array_sum * array_sum\n\n individual_square_sum = 0\n for i in range(0, n, 1):\n individual_square_sum += A[i] * A[i]\n individual_square_sum = individual_square_sum\n\n return ((array_sum_square - individual_square_sum) // 2) % tmp\n\nn = int(input())\na = list(map(int,input().split()))\n\nprint(float(findProductSum(a,n)))\n', '# required function\ndef findProductSum(A, n):\n tmp = (10**9)+7\n\n # calculating array sum (a1 + a2 ... + an)\n array_sum = 0\n for i in range(0, n, 1):\n array_sum = array_sum + A[i]\n\n # calcualting square of array sum\n # (a1 + a2 + ... + an)^2\n array_sum_square = array_sum * array_sum\n\n # calcualting a1^2 + a2^2 + ... + an^2\n individual_square_sum = 0\n for i in range(0, n, 1):\n individual_square_sum += A[i] * A[i]\n individual_square_sum = individual_square_sum\n\n # required sum is (array_sum_square -\n # individual_square_sum) / 2\n return ((array_sum_square -\n individual_square_sum) / 2) % tmp\n\nn = int(input())\na = list(map(int,input().split()))\n\nprint(findProductSum(a,n))\n', 'def findProductSum(A, n):\n tmp = (10**9)+7\n\n array_sum = 0\n for i in range(0, n, 1):\n array_sum = array_sum + A[i]\n\n array_sum_square = array_sum * array_sum\n\n individual_square_sum = 0\n for i in range(0, n, 1):\n individual_square_sum += A[i] * A[i]\n individual_square_sum = individual_square_sum\n\n return ((array_sum_square - individual_square_sum) / 2) % tmp\n\nn = int(input())\na = list(map(int,input().split()))\n\nprint(findProductSum(a,n))\n', 'def findProductSum(A, n):\n tmp = (10**9)+7\n\n array_sum = 0\n for i in range(0, n, 1):\n array_sum = array_sum + A[i]\n\n array_sum_square = array_sum * array_sum\n\n individual_square_sum = 0\n for i in range(0, n, 1):\n individual_square_sum += A[i] * A[i]\n individual_square_sum = individual_square_sum\n\n return ((array_sum_square - individual_square_sum) // 2) % tmp\n\nn = int(input())\na = list(map(int,input().split()))\n\nprint(findProductSum(a,n))\n']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s053181912', 's206152526', 's513366605', 's909000037']
[31596.0, 32924.0, 31584.0, 31584.0]
[111.0, 113.0, 104.0, 107.0]
[492, 748, 484, 485]
p02572
u440129511
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['n=int(input())\na=list(map(int,input().split()))\nif sum(a)==0:\n print(0)\n exit()\nelse:\n k=1\n for i in range(n-1):\n for j in range(i+1,n):\n k*=a[i]*a[j]\n k/=10**9+7\nprint(k)\n', 'n=int(input())\na=list(map(int,input().split()))\nif sum(a)==0:\n print(0)\n exit()\nelse:\n k=0\n s=sum(a)\n for i in range(n-1):\n s-=a[i]\n s1=s%(10**9+7)\n k+=(s1*a[i])%(10**9+7)\nprint(k%(10**9+7))']
['Wrong Answer', 'Accepted']
['s819392322', 's682788261']
[31668.0, 31596.0]
[2206.0, 164.0]
[213, 226]
p02572
u446371873
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['N = int(input())\nA = list(map(int,input().split()))\nS = 0\nS2 = 0\nMOD = 1000000007\nfor i in range(N):\n S += A[i]\n S2 += A[i]*A[i]\nprint((S*S-S2)/2%MOD)\n', 'N = int(input())\nA = list(map(int,input().split()))\nS = 0\nS2 = 0\nMOD = 1000000007\nfor i in range(N):\n S += A[i]\n S2 += A[i]*A[i]\nprint((S*S-S2)//2%MOD)\n']
['Wrong Answer', 'Accepted']
['s295515042', 's278664909']
[31572.0, 31376.0]
[128.0, 132.0]
[153, 154]
p02572
u451122856
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['n= int(input())\nmod=10**9+7\na= [int(x ) for x in input().split()]\nb= a[:]\n\ns=0\nfor i in range(n-2,-1,-1):\n b[i]=b[i+1]+b[i]\n\nfor i in range(n):\n s += (b[i]-a[i])*a[i]\n', 'n= int(input())\nmod=10**9+7\na= [int(x ) for x in input().split()]\nb= a[:]\n\ns=0\nfor i in range(n-2,-1,-1):\n b[i]=b[i+1]+b[i]\nfor i in range(n):\n s += (b[i]-a[i])*a[i]\nprint(s%mod)']
['Wrong Answer', 'Accepted']
['s902520601', 's467258020']
[31568.0, 31508.0]
[166.0, 171.0]
[173, 184]
p02572
u454656015
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['N=int(int(input))\nA=list(map(int,input().split()))\nsum=sum[A]\nb=0\nc=0\nfor i in range(N-1):\n b+=A[i]\n c=(c+(A[i]*(sum-b))) %(10**9+7)\nprint(c)', 'N=int(int(input))\nA=list(map(int,input().split()))\nsum=sum[A]\nb=0\nc=0\nfor i in range(N-1):\n b+=A[i]\n c=(c+(A[i]*(sum-b))) %(10**9+7)\nprint(c)', 'N=int(input())\na=list(map(int, input().split()))\nsum=sum(a)\nb=0\nc=0\nfor i in range(N-1):\n b+=a[i]\n c=(c+(a[i]*(sum-b))) %(10**9+7)\nprint(c)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s335296644', 's596404326', 's254837083']
[8952.0, 9068.0, 31436.0]
[29.0, 31.0, 149.0]
[147, 147, 145]
p02572
u460763828
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
["def main():\n N = int(input())\n A_list = list(map(int, input().split()))\n mod = 10**9 + 7\n\n ans = 0\n A_ = sum(A_list) % mod\n for i in range(N):\n A = A_list[i]\n A_ = A_ - A\n ans = (ans + (A * A_) % mod)) % mod\n print(ans)\n return\n\n\nif __name__ == '__main__':\n main()", "def main():\n N = int(input())\n A_list = list(map(int, input().split()))\n mod = 10**9 + 7\n\n ans = 0\n A_ = sum(A_list) % mod\n for i in range(N-1):\n A = A_list[i]\n A_ = A_ - A\n ans = (ans + (A * A_) % mod)) % mod\n print(ans)\n return\n\n\nif __name__ == '__main__':\n main()", "def main():\n N = int(input())\n A_list = list(map(int, input().split()))\n mod = 10**9 + 7\n\n ans = 0\n A_ = sum(A_list) % mod\n for i in range(N-1):\n A = A_list[i]\n A_ = A_ - A\n ans = (ans + (A * A_) % mod) % mod\n print(ans)\n return\n\n\nif __name__ == '__main__':\n main()\n "]
['Runtime Error', 'Runtime Error', 'Accepted']
['s116139261', 's850544769', 's048696831']
[8948.0, 8876.0, 31404.0]
[24.0, 26.0, 127.0]
[312, 314, 318]
p02572
u464823755
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['n=int(input())\na=list(map(int,input().split()))\nans=0\nsuma=sum(a)\nfor i in range(n):\n ans+=(a[i]*(suma-a[i]))\n ans/=2\nprint(int(ans%(10**9+7)))', 'n=int(input())\na=list(map(int,input().split()))\nans=0\nsuma=sum(a)\nfor i in range(n):\n suma-=a[i]\n ans+=(a[i]*(suma))%(10**9+7)\nprint(int(ans%(10**9+7)))\n']
['Wrong Answer', 'Accepted']
['s357446795', 's132855427']
[31420.0, 31560.0]
[129.0, 139.0]
[145, 155]
p02572
u466143662
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['import numpy as np\nn = int(input())\nnum_list = list(map(int, input().split()))\n\nmod = 1e+7+9\ncumsum_list = np.cumsum(num_list[::-1])[::-1][1:]\nscore = 0\nfor i in range(n-1):\n score += num_list[i] * cumsum_list[i] % mod\n \nprint(score % mod)', 'import numpy as np\nn = int(input())\nnum_list = list(map(int, input().split()))\nmod = int(1e+9+7)\ncumsum_list = np.cumsum(num_list[::-1])[::-1][1:]\nall_sum = sum(num_list)\nscore = 0\nfor i in range(n-1):\n \n score += (num_list[i] * (cumsum_list[i]%mod)) % mod\nprint(score % mod)']
['Wrong Answer', 'Accepted']
['s060195309', 's912076334']
[49952.0, 50012.0]
[832.0, 348.0]
[245, 316]
p02572
u473113960
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['MOD = 1000000007\nn = int(input())\nnums = list(map(int, input().split()))\nx = sum(sums)\ny = sum([(x[i]**2) for i in range(n)])\nprint(((x**2 - y)//2)% MOD)', 'MOD = 1000000007\nn = int(input())\nnums = list(map(int, input().split()))\nx = sum(nums)\ny = sum([(nums[i]**2) for i in range(n)])\nprint(((x**2 - y)//2)% MOD)']
['Runtime Error', 'Accepted']
['s952558342', 's670450278']
[31408.0, 31352.0]
[70.0, 129.0]
[153, 156]
p02572
u474212171
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['import numpy as np\n\nMOD = 10 ** 9 + 7\n\nn=int(input()) #3\nalst=np.array(list(map(int,input().split()))) #[1,2,3]\n\n\n\n\nprint(alst)\ns=np.cumsum(alst)\nprint(s)\n\nsum=0\n\nfor i in range(len(alst)-1):\n sum+=alst[i]*(s[len(s)-1]-s[i])\n\nprint(sum%MOD)', 'import numpy as np\n\nMOD = 10 ** 9 + 7\n\nn=int(input()) #3\nalst=list(map(int,input().split())) #[1,2,3]\n\ns=list(np.cumsum(alst))\ns.insert(0,0)\nprint(s)\n\nsum=0\n\nfor i in range(len(alst)-1):\n sum+=alst[i]*(s[len(s)-1]-s[i+1])\n\nprint(sum%MOD)', "import numpy as np\n\nMOD = 10 ** 9 + 7\n\nn=int(input()) #3\nalst=list(map(int,input().split())) #[1,2,3]\n\n\n\n\n\n# [0,1,3,6,10,15,21]\n\ns=np.cumsum(alst,dtype='list')\n\nsum=0\n\nfor i in range(len(alst)-1):\n sum+=alst[i]*(s[len(s)-1]-s[i])\n\nprint(sum%MOD)", 'MOD = 10 ** 9 + 7\n\nn=int(input()) #3\nalst=list(map(int,input().split())) #[1,2,3]\n\n\n\n\n\n# [0,0+1,0+1+2,0+1+2+3,0+1+2+3+4,0+1+2+3+4+5,0+1+2+3+4+5+6]\n\ns=[0]\nfor i in range(len(alst)):\n s.append(s[i]+alst[i])\n\nprint(s)\nsum=0\n\nfor i in range(len(alst)-1):\n sum+=alst[i]*(s[len(s)-1]-s[i+1])\n\nprint(sum%MOD)', 'import numpy as np\n\nMOD = 10 ** 9 + 7\n\nn=int(input()) #3\nalst=list(map(int,input().split())) #[1,2,3]\n\n\n\n\n\n# [0,1,3,6,10,15,21]\n\ns=np.cumsum(alst)\nans=[0]\n\nfor i in range(len(s)):\n ans.append(s[i])\n\nsum=0\n\nfor i in range(len(alst)-1):\n sum+=alst[i]*(ans[len(s)-1]-ans[i+1])\n\nprint(sum%MOD)', "import numpy as np\n\nMOD = 10 ** 9 + 7\n\nn=int(input()) #3\nalst=list(map(int,input().split())) #[1,2,3]\n\n\n\n\n\n# [0,1,3,6,10,15,21]\n\ns=np.cumsum(alst,dtype='float32')\n\nsum=0\n\nfor i in range(len(alst)-1):\n sum+=alst[i]*(s[len(s)-1]-s[i])\n\nprint(sum%MOD)", 'import numpy as np\n\nMOD = 10 ** 9 + 7\n\nn=int(input()) #3\nalst=np.array(list(map(int,input().split())))\n\n\ns=np.cumsum(alst)\n\nsum=0\n\nfor i in range(len(alst)-1):\n print(i)\n sum+=alst[i]*(s[len(s)-1]-s[i])\n\nprint(sum%MOD)', 'import numpy as np\nMOD = 10 ** 9 + 7\n\nn=int(input()) #3\nalst=list(map(int,input().split())) #[1,2,3]\n\n\n\n\n\n# [0,0+1,0+1+2,0+1+2+3,0+1+2+3+4,0+1+2+3+4+5,0+1+2+3+4+5+6]\n\ns=[0]\nfor i in range(len(alst)):\n s.append(s[i]+alst[i])\n\nprint(s)\nsum=0\n\nfor i in range(len(alst)-1):\n sum+=alst[i]*(s[len(s)-1]-s[i+1])\n\nprint(sum%MOD)', 'import numpy as np\n\nMOD = 10 ** 9 + 7\n\nn=int(input()) #3\nalst=list(map(int,input().split()))\n\n\ns=np.cumsum(alst)\n\nsum=0\n\nfor i in range(len(alst)-1):\n print(i)\n sum+=alst[i]*(s[len(s)-1]-s[i])\n\nprint(sum%MOD)', 'import numpy as np\n\nMOD = 10 ** 9 + 7\n\nn=int(input()) #3\nalst=list(map(int,input().split())) #[1,2,3]\n\n\n\n\n\n# [0,1,3,6,10,15,21]\n\ns=np.cumsum(alst)\nans=[0]\n\nfor i in range(len(s)):\n ans.append(s[i])\n\nprint(ans)\nsum=0\n\nfor i in range(len(alst)-1):\n sum+=alst[i]*(s[len(s)-1]-s[i+1])\n\nprint(sum%MOD)', 'MOD = 10 ** 9 + 7\n\n\n# [0,1,3,6,10,15,21]\ncumsum=[0]\ndef my_cumsum(alst):\n for i in range(len(alst)):\n cumsum.append(cumsum[i]+alst[i])\n return cumsum\n\nn=int(input()) #3\nalst=list(map(int,input().split()))\n\n\n# s=np.cumsum(alst)\n\ns=my_cumsum(alst)\n\nsum=0\n\nfor i in range(len(alst)-1):\n sum+=alst[i]*(s[len(s)-1]-s[i+1])\n\nprint(sum%MOD)']
['Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s097993922', 's105424549', 's321317467', 's341363571', 's517508650', 's569251695', 's722026062', 's729460356', 's933370123', 's972794827', 's118936979']
[49916.0, 53320.0, 50116.0, 35772.0, 49872.0, 49800.0, 50084.0, 52876.0, 50136.0, 51756.0, 31664.0]
[500.0, 571.0, 168.0, 212.0, 536.0, 638.0, 560.0, 303.0, 576.0, 631.0, 172.0]
[241, 238, 313, 370, 358, 316, 220, 389, 210, 365, 425]
p02572
u475189661
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
["l = int(input())\nnum = input().split(' ')\nnum = [int(i) for i in num]\nans = 0\ns = sum(num)\nfor i in range(l):\n print(s)\n s -= num[i]\n ans += num[i] * s\n print(ans)\nprint(ans%(10**9+7))", "l = int(input())\nnum = input().split(' ')\nnum = [int(i) for i in num]\nans = 0\ns = sum(num)\nfor i in range(l):\n s -= num[i]\n ans += num[i] * s\nprint(ans%(10**9+7))"]
['Wrong Answer', 'Accepted']
['s217705013', 's753886900']
[31428.0, 31400.0]
[275.0, 132.0]
[196, 168]
p02572
u475402977
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['N=int(input())\nA=list(map(int, input().split()))\np=10**9+7\nS=sum(A)\nS2=S**2\nT=0\nfor i in range(N):\n T+=A[i]**2\nans=((S2-T)//2)%p\nprint(ans,S2)', 'N=int(input())\nA=list(map(int, input().split()))\nB=[A[0]]\nfor i in range(1,N):\n B.append(B[i-1]+A[i])\np=10**9+7\nans=0\nfor i in range(1,N):\n ans+=A[i]*B[i-1]\nans%=p\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s699158245', 's237810850']
[31620.0, 31628.0]
[150.0, 162.0]
[145, 181]
p02572
u476590491
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['# -*- coding: utf-8 -*-\n\n\n\nn = int(input())\n\nzzz = list(map(int, input().split()))\nb=sum(zzz)**2\na=0\nfor i in range(n):\n # print(i)\n x=zzz[i]**2\n print(x)\n a +=x\n# print(b)\n# for a in zzz:\n# print(a)\n\n# print(b)\n# print(a)\n\nans = (b-a)//2%(10**9+7)\nprint(ans)\n', '# -*- coding: utf-8 -*-\n\n\n\nn = int(input())\n\nzzz = list(map(int, input().split()))\nb=sum(zzz)**2\na=0\nfor i in range(n):\n # print(i)\n x=zzz[i]**2\n print(x)\n a +=x\n# print(b)\n# for a in zzz:\n# print(a)\n\n# print(b)\n# print(a)\n\nans = (b-a)//2%(10**9+7)\nprint(ans)\n', '# -*- coding: utf-8 -*-\n\n\n\nn = int(input())\n\nzzz = list(map(int, input().split()))\nb=sum(zzz)**2\na=0\nfor i in range(n):\n # print(i)\n x=zzz[i]**2\n # print(x)\n a +=x\n# print(b)\n# for a in zzz:\n# print(a)\n\n# print(b)\n# print(a)\n\nans = (b-a)//2%(10**9+7)\nprint(ans)\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s256066081', 's358335754', 's215399523']
[31660.0, 31436.0, 31388.0]
[214.0, 228.0, 143.0]
[324, 324, 326]
p02572
u483721532
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['import numpy as np\n\nN = int(input())\nA = list(map(int, input().split()))\n\nmod = 1000000007\nres = np.cumsum(A, dtype=np.float64)\nans = 0\n\nfor i in range(N-1):\n S = (res[N-1]-res[i]) % mod\n ans += A[i]*S\n ans %= mod\n\nprint(ans)\n\n', 'import numpy as np\n\nN = int(input())\nA = list(map(int, input().split()))\n\nmod = 1000000007\nres = np.cumsum(A, dtype=np.float64)\nans = 0\n\nfor i in range(N-1):\n S = (int(res[N-1])-int(res[i])) % mod\n ans += A[i]*S\n ans %= mod\n\nprint(int(ans))']
['Wrong Answer', 'Accepted']
['s206732583', 's705218929']
[49964.0, 50036.0]
[446.0, 348.0]
[236, 249]
p02572
u486209657
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['import numpy as np\n\nN=int(input())\nA=np.array(list(map(int,input().split())))\nmod=10**9+7\n\nans = np.sum(A)- np.sum(A*A)\n\nprint(ans//2%mod)', 'n = int(input())\na = list(map(int,input().split()))\nmod = 10**9+7\naa = 0\nb = 0\nfor i in range(n):\n aa += a[i] ** 2 \n b += a[i]\n \n #b %= mod\nprint((b ** 2 - aa)//2%mod)\n']
['Wrong Answer', 'Accepted']
['s966618513', 's543961986']
[50012.0, 31380.0]
[171.0, 153.0]
[138, 191]
p02572
u490127109
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['input_num = int(input())\ninput_list = list(map(int, input().split()))\n\nsum = 0\n\nfor i in range(input_num):\n for j in range(input_num - i - 1):\n print(input_list[i], input_list[input_num -1-j])\n sum += input_list[i] * input_list[input_num -1 - j]\n\nprint(sum % 1000000007)\n\n', 'input_num = int(input())\ninput_list = list(map(int, input().split()))\n\nsum = 0\n\nfor i in range(input_num):\n for j in range(input_num - i - 1):\n print(input_list[i], input_list[input_num -1-j])\n sum += input_list[i] * input_list[input_num -1 - j]\n\nprint(sum % 1000000007)\n', 'N = int(input())\nA = list(map(int, input().split()))\n\nsum_tmp = sum(A)\nmod = 10 ** 9 + 7\nsqu = 0\nsum = 0\n\nfor i in range(N):\n sum += A[i]*sum_tmp\n squ += A[i] ** 2\n\nsum = (sum - squ) / 2\nprint(sum % mod)', 'N = int(input())\nA = list(map(int, input().split()))\n\nmod = 10 ** 9 + 7\nsum = sum(A) ** 2\n\nsqu = 0\nfor i in range(N):\n squ += A[i] ** 2\n\nanswer = int(((sum - squ) // 2 ) % mod)\nprint(answer)']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s006353333', 's450373735', 's876933779', 's214275256']
[68520.0, 68836.0, 31584.0, 31704.0]
[2270.0, 2262.0, 164.0, 132.0]
[289, 288, 210, 197]
p02572
u492929439
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['N = int(input())\nA = [int(num) for num in input().split()]\n\nsumA = sum(A)\nans = 0\nfor i in range(len(A)):\n sumA = sumA - A[i]\n ans += A[i] * sumA\n\n\nans = ans % (10**9)+7)\nprint(ans)', 'N = int(input())\nA = [int(num) for num in input().split()]\n\nsumA = sum(A)\nans = 0\nfor i in range(len(A)):\n sumA = sumA - A[i]\n ans += A[i] * sumA\n\n\nans = ans % (10**9)+7))\nprint(ans)', 'N = int(input())\nA = [int(num) for num in input().split()]\n\nsumA = sum(A)\nans = 0\nfor i in range(len(A)):\n sumA = sumA - A[i]\n ans += A[i] * sumA\n\n\nans = ans % (10**9+7)\nprint(ans)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s494474500', 's730030049', 's931640759']
[8988.0, 9040.0, 31544.0]
[24.0, 29.0, 132.0]
[187, 188, 186]
p02572
u497200058
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['N = int(input())\nAl = input().split()\n\nA = range(N)\nfor i in range(Al):\n A[i] = int(i)\n\nnum = 0\n\nfor i in range(N):\n for j in range(i+1, N):\n num += A[i]*A[j]\n\nnum = num % (10**9 + 7)\nprint(num)', 'N = int(input())\nAl = input().split()\nA = list( map((lambda x: int(x)), Al))\nnum = 0\nma = 10**9 + 7\nli = 0\n\nfor i in range(N-1, 0, -1):\n li += A[i]\n num += A[i-1] * li\n\nnum = num % ma\nprint(num)\n']
['Runtime Error', 'Accepted']
['s150487002', 's149721390']
[25100.0, 31656.0]
[47.0, 141.0]
[199, 197]
p02572
u497883442
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['M = 1000000007\nn = int(input())\na = list(map(int,input().split()))\nS = [0]\nfor i in range(n):\n S.append(S[-1]+a[i])%M\nsum = 0\nfor i in range(n-1):\n sum += (a[i]*(S[n]-S[i+1]))%M\nprint(sum%M)\n', 'M = 1000000007\nn = int(input())\na = list(map(int,input().split()))\nS = [0]\nfor i in range(n):\n S.append((S[-1]+a[i])%M)\nsum = 0\nfor i in range(n-1):\n sum += (a[i]*(S[n]-S[i+1]))%M\nprint(sum%M)']
['Runtime Error', 'Accepted']
['s296887520', 's292437236']
[31448.0, 31536.0]
[73.0, 193.0]
[191, 192]
p02572
u500376440
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['MAX=101010\nis_prime=[True]*MAX\nis_prime[0]=False\nis_prime[1]=False\nfor i in range(2,MAX):\n if is_prime[i]==False:\n continue\n for j in range(i*2,MAX,i):\n is_prime[j]=False\n\na=[0]*MAX\nfor i in range(MAX):\n if i%2==0:\n continue\n if is_prime[i] and is_prime[(i+1)//2]:\n a[i]=1\n\ns=[0]\nfor x in a:\n s.append(s[-1]+x)\n\nQ=int(input())\nfor _ in range(Q):\n l,r=map(int,input().split())\n print(s[r+1]-s[l])\n', 'mod=10**9+7\n\nN=int(input())\nA=list(map(int,input().split()))\nB=[0]\nfor x in A:\n B.append(B[-1]+x)\n\nans=0\nfor i in range(N):\n s=(B[N]-B[i+1])%mod\n ans+=A[i]*s\n ans%=mod\n\nprint(ans)\n']
['Runtime Error', 'Accepted']
['s282515877', 's024892390']
[29720.0, 31504.0]
[102.0, 192.0]
[415, 184]
p02572
u506689504
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['mod = 10**9+7\nN = int(input())\na = list(map(int, input().split()))\nsum_a = sum(a)%mod\nsum_a2 = sum([x**2 for x in a])%mod\nans = ((sum_a**2 - sum_a2)%mod)/2\nprint(ans)', 'mod = 10**9+7\nN = int(input())\na = list(map(int, input().split()))\nsum_a = 0\nsum_a2 = 0\nfor x in a:\n sum_a += x\n sum_a2 += x**2\n\nans = ((sum_a**2 - sum_a2))//2\nprint(ans%mod)\n']
['Wrong Answer', 'Accepted']
['s194575056', 's128771065']
[31428.0, 31356.0]
[125.0, 145.0]
[166, 177]
p02572
u506907236
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['L=[int(x) for x in input().split()]\nsum=0\nproduct=0\nmod=1000000007\nfor i in range(n):\n sum+=L[i]%mod\nfor i in range(n-1):\n sum-=(L[i]%mod)\n product+=sum*(L[i]%mod)\nprint(product)', 'L=[int(x) for x in input().split()]\nsum=0\nproduct=0\nmod=1000000007\nfor i in range(n):\n sum+=L[i]%mod\nfor i in range(n-1):\n sum-=(L[i]%mod)\n product+=sum*(L[i]%mod)\nprint(product)\n', 'n=int(input())\nL=[int(x) for x in input().split()]\nsum=0\nproduct=0\nmod=1000000007\nfor i in range(n):\n sum+=L[i]%mod\nfor i in range(n-1):\n sum-=(L[i]%mod)\n product+=sum*(L[i]%mod)\nprint(product%mod)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s575523414', 's718037491', 's165278272']
[9188.0, 9172.0, 31340.0]
[25.0, 26.0, 172.0]
[187, 188, 206]
p02572
u531456543
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['n= int(input())\nlst = [int(i) for i in input().split()]\nlst = sorted(lst)\ncount = 0\nd_lst = []\nfor i in range(len(lst)):\n if lst[i] not in d_lst:\n if lst[i] == lst[i+1]:\n d_lst.append(lst[i])\nfor d in d_lst:\n count += d**2\nlst = set(lst)\n\nfor i in range(len(lst)):\n for j in range(i+1,len(lst)):\n a = lst[i] * lst[j]\n count += a\n\nif count > ( 10**9 + 7 ):\n print(count % (10**9 + 7))\nelse:\n print(count)', 'n= int(input())\nlst = [int(i) for i in input().split()]\nlst = sorted(lst)\ncount = 0\nd_lst = []\nfor i in range(len(lst)):\n if lst[i] not in d_lst:\n if lst[i] == lst[i+1]:\n d_lst.append(lst[i])\nfor d in d_lst:\n count += d**2\nlst = list(set(lst))\n\nfor i in range(len(lst)):\n for j in range(i+1,len(lst)):\n a = lst[i] * lst[j]\n count += a\n\nif count > ( 10**9 + 7 ):\n print(count % (10**9 + 7))\nelse:\n print(count)', 'n = int(input())\na = list(map(int, input().split()))\nruiseki = 0\ncount = 0\nfor i in range(n-1):\n ruiseki += a[i]\n count += ruiseki * a[i+1]\nmod = 10**9 + 7\nif count >= mod:\n print(count%mod)\nelse:\n print(count)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s130000652', 's325636839', 's289850375']
[31532.0, 31436.0, 31616.0]
[251.0, 257.0, 129.0]
[450, 456, 222]
p02572
u536642030
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['n = input()\na_list = list(map(int, input().split()))\nsum_ = 0\nmod = 10 ** 9 + 7\nfor i in range(len(a_list) - 1):\n sum_ += ((a_list[i] % mod) * (a_list[i + 1] % mod)) % mod \nprint(sum_ % mod)', 'n = input()\na_list = list(map(int, input().split()))\nruisekiwa = [0] * (len(a_list) + 1) \nfor i in range(len(a_list)):\n ruisekiwa[i + 1] = ruisekiwa[i] + a_list[i]\nsum_ = 0\nmod = 10 ** 9 + 7\nfor i in range(len(a_list)):\n sum_ += ((a_list[i] % mod) * ((ruisekiwa[-1] % mod) - (ruisekiwa[i + 1] % mod))) % mod\nprint(sum_ % mod)']
['Wrong Answer', 'Accepted']
['s439781607', 's112395758']
[31476.0, 31612.0]
[136.0, 219.0]
[191, 331]
p02572
u544865362
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
["\ndef findProductSum(A, n):\n\n array_sum = 0\n for i in range(0, n, 1):\n array_sum = array_sum + A[i]\n\n # calcualting square of array sum\n # (a1 + a2 + ... + an)^2\n array_sum_square = array_sum * array_sum\n\n # calcualting a1^2 + a2^2 + ... + an^2\n individual_square_sum = 0\n for i in range(0, n, 1):\n individual_square_sum += A[i] * A[i]\n\n # required sum is (array_sum_square -\n # individual_square_sum) / 2\n return (array_sum_square -\n individual_square_sum) / 2\n\n# Driver code\nif __name__ == '__main__':\n n = int(input())\n A = [int(x) for x in input().split()]\n # n = len(A)\n print((findProductSum(A, n)%(10**9 +7)))\n\n", '\ndef findProductSum(A, n):\n\n array_sum = 0\n for i in range(0, n, 1):\n array_sum = array_sum + A[i]\n\n # calcualting square of array sum\n # (a1 + a2 + ... + an)^2\n array_sum_square = array_sum * array_sum\n\n # calcualting a1^2 + a2^2 + ... + an^2\n individual_square_sum = 0\n for i in range(0, n, 1):\n individual_square_sum += A[i] * A[i]\n\n\n return (array_sum_square - individual_square_sum) // 2\n\n\ndef main():\n n = int(input())\n A = [int(x) for x in input().split()]\n # n = len(A)\n mod = (10**9) + 7\n print(int(findProductSum(A, n))%mod)\n\nmain()\n\n']
['Wrong Answer', 'Accepted']
['s597208640', 's682569743']
[31612.0, 31524.0]
[119.0, 119.0]
[687, 600]
p02572
u546853743
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['n=int(input())\nai = list(map(int,input().split()))\nsum = 0\ni=0\nk=1\nwhile i<n-1:\n while k<n-i:\n sum += ai[i]*ai[i+k]\n k++\n i++\nsum %= 1000000007\nprint(sum)', 'N=int(input())\nA=list(map(int,input().split()))\nans = 0\nlast = 0\n\nfor i in range(N):\n ans += A[i]\nlast += sum(A)\nlast -= ans\nlast //= 2\nprint(last % 1000000007)', 'N=int(input())\nA=list(map(int,input().split()))\nans = 0\nlast = 0\n\nfor i in range(N):\n ans += A[i]*A[i]\nlast += sum(A)*sum(A)\nlast -= ans\nlast //= 2\nprint(last % 1000000007)']
['Runtime Error', 'Wrong Answer', 'Accepted']
['s066908332', 's579864146', 's643723498']
[8968.0, 31624.0, 31548.0]
[27.0, 102.0, 118.0]
[164, 163, 175]
p02572
u552083508
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['N=int(input())\nA=list(int(i) for i in input().split())\nprint(A)\nS=0\nfor i in range(N):\n for j in range(i+1,N):\n S+=A[i]*A[j]\nprint(S%((pow(10,9)+7)))', 'N=int(input())\nA=input().split()\nA=[int(i) for i in A]\nS=0\nA_sum=0\nfor i in range(N):\n A_sum+=A[i]\n \n\nB=A_sum\nfor i in range(N):\n B-=A[i]\n S+=A[i]*B\n\nprint(S%(pow(10,9)+7))']
['Wrong Answer', 'Accepted']
['s681591723', 's135591914']
[31660.0, 31764.0]
[2209.0, 152.0]
[159, 184]
p02572
u552143188
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['N = int(input())\nA = [int(a) for a in input().split()]\nmod = 10 ** 9 + 7\nans = 0\nfor i in range(N - 1):\n for j in range(i+1, N):\n a = (A[i] * A[j]) % mod\n ans += a\n ans = ans % mod\n print(a)\nprint(ans)', "N = int(input())\nA = [int(a) for a in input().split()]\nmod = 10 ** 9 + 7\nans = 0\n#TLE\n'''\nfor i in range(N - 1):\n for j in range(i+1, N):\n a = A[i] % mod\n b = A[j] % mod\n ans += (a * b) % mod\n ans = ans % mod\n'''\ntot = 0\nfor i in range(N):\n A[i] %= mod\n tot += A[i]\n tot %= mod\nfor i in range(N-1):\n tot -= A[i]\n ans += (A[i] * tot) % mod\n ans %= mod\nprint(ans)"]
['Wrong Answer', 'Accepted']
['s565288233', 's330473250']
[31672.0, 30740.0]
[2206.0, 237.0]
[212, 380]
p02572
u556371693
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['n = int(input())\na = list(map(int, input().split()))\ni = 0\ntmp = 0\ntmpura = 0\nwhile(i < n):\n tmp += a[i]\n i+=1\ntmp=tmp **2\ni = 0\nwhile (i < n):\n tmpura += a[i]**2\n i+=1\ntmpura=tmpura\nans = ((tmp - tmpura)/2)%(10**9+7)\nprint(ans)', 'n = int(input())\na = list(map(int, input().split()))\ni = 0\ntmp = 0\ntmpura = 0\nwhile(i < n):\n tmp += a[i]\n i+=1\ntmp=tmp **2\ni = 0\nwhile (i < n):\n tmpura += a[i]**2\n i+=1\ntmpura=tmpura\nans = ((tmp - tmpura)//2)%(10**9+7)\nprint(ans)']
['Wrong Answer', 'Accepted']
['s306462003', 's022393708']
[31748.0, 31596.0]
[173.0, 184.0]
[240, 241]
p02572
u556594202
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['n = int(input())\na = list(map(int,input().split()))\n\na2=[a[n-1]]\nfor i in range(n-1,0,-1):\n a2.append(a2[-1]+a[i-1])\nprint(a2)\nans=0\nfor i in range(n-1):\n ans = ( ans + (a[i]*a2[-i-2]) )%(10**9+7)\nprint(ans)\n', 'N = int(input())\nA = list(map(int,input().split()))\n\nans=0\n\nfor i in range(N):\n ans=(ans+A[i])%(10**9+7)\nprint(ans)\nans=ans**2\n\nfor i in range(N):\n ans=(ans-A[i]**2)%(10**9+7)\n\nprint(ans/2)\n', 'N = int(input())\nA = list(map(int,input().split()))\n\nans=0\n\nfor i in range(N):\n ans=(ans+A[i])%(10**9+7)\nans=ans**2\n\nfor i in range(N):\n ans=(ans-A[i]**2)%(10**9+7)\n\nprint(ans/2)\n', 'n = int(input())\na = list(map(int,input().split()))\n\na2=[a[n-1]]\nfor i in range(n-1,0,-1):\n a2.append(a2[-1]+a[i-1])\nans=0\nfor i in range(n-1):\n ans = ( ans + (a[i]*a2[-i-2]) )%(10**9+7)\nprint(ans)\n']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s101836422', 's322504771', 's593516030', 's962307514']
[35732.0, 31336.0, 31352.0, 31676.0]
[215.0, 193.0, 180.0, 186.0]
[214, 196, 185, 204]
p02572
u557792847
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['mport sys\nimport numpy as np\nimport math\nimport collections\nimport copy\nimport decimal\nimport itertools\nfrom collections import deque \nfrom functools import reduce\nfrom itertools import product\nfrom itertools import combinations\n\n# input = sys.stdin.readline\nN = int(input())\nAn = list(map(int, input().split()))\nAn_l = list(itertools.accumulate(An))\nAn_l.insert(0, 0)\nans = 0\nfor i, A in enumerate(An):\n tt = An_l[-1] - An_l[i+1]\n# print(i, An_l[-1], An_l[i], tt)\n At = A * tt\n# print(A, tt, At)\n ans = (ans+At) % (10**9+7)\n# print(ans)\nprint(ans)\n\n', 'N = int(input())\nAn = list(map(int, input().split()))\nAn_s = collections.Counter(An)\ntotal = 0\nfor k in An_s:\n total += k\nans = 0\nfor A, v in An_s.items():\n At = A * (total-A)*v\n# print(A, total, At, ans)\n ans = (ans+At) % (10**9+7)\n# print(ans)\nprint(ans//2)', 'import sys\nimport numpy as np\nimport math\nimport collections\nimport copy\nimport decimal\nimport itertools\nfrom collections import deque \nfrom functools import reduce\nfrom itertools import product\nfrom itertools import combinations\n \n# input = sys.stdin.readline\nN = int(input())\nAn = list(map(int, input().split()))\nAn_l = list(itertools.accumulate(An))\nAn_l.insert(0, 0)\nans = 0\nfor i, A in enumerate(An):\n tt = An_l[-1] - An_l[i+1]\n# print(i, An_l[-1], An_l[i], tt)\n At = A * tt\n# print(A, tt, At)\n ans = (ans+At) % (10**9+7)\n# print(ans)\nprint(ans)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s161543500', 's607045551', 's293367641']
[8904.0, 31580.0, 50080.0]
[22.0, 74.0, 246.0]
[571, 276, 571]
p02572
u562016607
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['N=int(input())\na=[int(i) for i in input().split()]\nmod=10**9+7\nS=sum(a)%mod\nT=sum([i*i for i in a])%mod\nprint((S*S-T)%mod)\n', 'import numpy as np\nN=int(input())\nP=10**9+7\na=[int(i) for i in input().split()]\nb=[0 for i in range(P)]\nfor i in range(N):\n b[a[i]]+=1\nM=1<<19\nc=np.zeros(M)\nfor i in range(P-1):\n c[i]=b[pow(2,i,P)]\nX=[int(i+0.1) for i in np.real(np.fft.ifft(np.fft.fft(c)*np.fft.fft(c)))]\nans=0\nfor k in range(M):\n ans+=X[k]*pow(2,k,P)\nfor i in range(N):\n ans-=(a[i]*a[i])%P\nprint((ans//2)%P)\n', 'N=int(input())\na=[int(i) for i in input().split()]\nmod=10**9+7\nS=sum(a)%mod\nT=sum([i*i for i in a])%mod\nprint((pow(2,mod-2,mod)*(S*S-T))%mod)\n']
['Wrong Answer', 'Time Limit Exceeded', 'Accepted']
['s302157982', 's331874565', 's365958952']
[31760.0, 617284.0, 31560.0]
[98.0, 2224.0, 105.0]
[123, 388, 142]
p02572
u572032237
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['n = int(input())\na = [int(s) for s in input().split()]\nb = []\nval = 0\nfor i in range(0, n):\n b.append(a[i] * sum(a[:i])) \nval = sum(b)\nprint(b)\nprint(val % (10 ** 9 + 7))', 'n = int(input())\na = [int(s) for s in input().split()]\nb = []\nval = 0\nsum_val= 0\nfor i in range(0, n):\n b.append(a[i] * sum_val) \n sum_val+= a[i] \nval = sum(b)\nprint(val % (10 ** 9 + 7))']
['Wrong Answer', 'Accepted']
['s582430471', 's502882283']
[31612.0, 31660.0]
[2206.0, 142.0]
[173, 192]
p02572
u588592871
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
["n=int(input())\na=list(input().split(' '))\ntotal=0\nS_i=0\nfor i in range(n-1):\n S_i+=a[n-1-i]\n S_i=S_i%(7+10**9)\n total+=S_i*a[n-2-i]\n total=total%(7+10**9)\nprint(total)", "n=int(input())\na=list(input().split(' '))\ntotal=0\nS_i=0\nfor i in range(n-1):\n S_i+=int(a[n-1-i])\n S_i=S_i%(7+10**9)\n total+=S_i*int(a[n-2-i])\n total=total%(7+10**9)\nprint(total)"]
['Runtime Error', 'Accepted']
['s548612580', 's668681487']
[25164.0, 25204.0]
[52.0, 207.0]
[179, 189]
p02572
u591143370
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['S=list(str(input()))\nT=list(str(input()))\nans=10000\nfor i in range(len(S)-len(T)+1):\n s=0\n for u in range(len(T)):\n if S[i+u]==T[u]:\n s+=1\n #print(s)\n s=len(T)-s\n ans=min(ans,s)\nprint(ans)', 'from collections import deque\nN = int(input())\nA = list(map(int, input().split()))\n#N=3\n#A=[1,2,3]\nq=deque(A)\n#print(q)\nans=0\nsums=sum(q)\n#print(sums)\nfor i in range(N-1):\n qwe=q.popleft()\n ans+=qwe *(sums-qwe)\n sums-=qwe\nprint(ans%(10**9+7))']
['Wrong Answer', 'Accepted']
['s304835859', 's740061843']
[28004.0, 32468.0]
[68.0, 144.0]
[229, 251]
p02572
u592547545
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
["def readinput():\n n=int(input())\n a=list(map(int,input().split()))\n return n,a\n\n\n\n\n\ndef exEuclid(a, b):\n if (b==0):\n return (a, 1, 0)\n else:\n (dd, xx, yy) = exEuclid(b, a % b)\n return (dd, yy, xx - (a//b)*yy)\n\ndef main(n,a):\n MOD=10**9+7\n sum1=0\n sum2=0\n for i in range(n):\n sum1=(sum1+a[i])%MOD\n sum2=(sum2+(a[i]*a[i]))%MOD\n\n aa=(sum1*sum1-sum2+MOD)//2\n\n d,x,y=exEuclid(2,MOD)\n return aa%MOD\n\nif __name__=='__main__':\n n,a=readinput()\n ans=main(n,a)\n print(ans)\n", "def readinput():\n n=int(input())\n a=list(map(int,input().split()))\n return n,a\n\n\n\n\n\ndef exEuclid(a, b):\n if (b==0):\n return (a, 1, 0)\n else:\n (dd, xx, yy) = exEuclid(b, a % b)\n return (dd, yy, xx - (a//b)*yy)\n\ndef main(n,a):\n MOD=10**9+7\n sum1=0\n sum2=0\n for i in range(n):\n sum1=(sum1+a[i])%MOD\n sum2=(sum2+(a[i]*a[i]))%MOD\n\n aa=(sum1*sum1-sum2+MOD)%MOD\n\n d,x,y=exEuclid(2,MOD)\n if x<0:\n x+=MOD\n #print(x)\n\n return (aa*x)%MOD\n\ndef main2(n,a):\n MOD=10**9+7\n ruiseki=[0]*n\n ruiseki[0]=a[0]\n for i in range(1,n):\n ruiseki[i]=(ruiseki[i-1]+a[i])%MOD\n sum=0\n for i in range(n-1):\n sum=(sum+(a[i]*(ruiseki[n-1]-ruiseki[i]))%MOD)%MOD\n return sum\n\nif __name__=='__main__':\n n,a=readinput()\n ans=main2(n,a)\n print(ans)\n"]
['Wrong Answer', 'Accepted']
['s867364210', 's659547076']
[32176.0, 31568.0]
[128.0, 176.0]
[756, 1052]
p02572
u602773379
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['\ndef input_array():\n\treturn list(map(int,input().split()))\n \nn=int(input())\nA=input_array()\nacc_A=[0]\n\nfor i in range(n):\n\tacc_A.append(acc_A[i]+A[i])\nans=0\nprint(A,acc_A)\nfor i in range(n):\n\t# print(A[i]*acc_A[i:n+1])\n\tans+=A[i]*(acc_A[n]-acc_A[i+1])\n\nprint(ans %(10**9+7))', '\ndef input_array():\n\treturn list(map(int,input().split()))\n \nn=int(input())\nA=input_array()\nacc_A=[0]\n\nfor i in range(n):\n\tacc_A.append(acc_A[i]+A[i])\nans=0\nfor i in range(n):\n\tans+=A[i]*(acc_A[n]-acc_A[i+1])\n\nprint(ans %(10**9+7))']
['Wrong Answer', 'Accepted']
['s005215001', 's880656994']
[36084.0, 31536.0]
[209.0, 163.0]
[314, 271]
p02572
u606090886
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['n = int(input())\na = list(map(int,input().split()))\npans = 0\nsum_ = sum(a)%(10**9+7)\nfor i in range(n-1):\n sum -= a[i]\n ans = sum * a[i]\n ans = ans % (10**9+7)\n pans += ans\nprint(pans%(10**9+7))', 'n = int(input())\na = list(map(int,input().split()))\npans = 0\nsum_ = sum(a)%(10**9+7)\nfor i in range(n-1):\n sum_ -= a[i]\n ans = sum_ * a[i]\n ans = ans % (10**9+7)\n pans += ans\nprint(pans%(10**9+7))']
['Runtime Error', 'Accepted']
['s245257111', 's176454820']
[31624.0, 31448.0]
[73.0, 171.0]
[206, 208]
p02572
u611090896
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['N = int(input())\nA = map(int,input().split())\ntotal=0\nfor i in range(1,N+1):\n try:\n sumA = A[i-1]*sum(A[i:])\n total+=sumA\n except:\n pass\nprint(total)\n', 'N = int(input())\nA = map(int,input().split())\ntotal=0\nfor i in range(N):\n try:\n sumA = A[i]*sum(A[i+1:])\n total+=sumA\n except:\n pass\nprint(total)', "N = int(input())\nA = [list(map(str,input().split()) for i in range(N))]\nmod = 10**9+7\nans=0\nfor i in range(2**N):\n cl = [False]*N\n for j in range(N):\n if ((i>>j)&1):\n cl[N-1-j] = True\n total=''\n if cl.count(True) == 2:\n for k in range(len(cl)):\n if cl[k]:\n total+= A[k] + '*'\n total+= '1'\n ans += eval(total)\n\nprint(ans%mod)\n", 'N = int(input())\nA = list(map(int,input().split()))\ncount=0\nnum=0\nfor i in range(N):\n while count != N:\n count = i\n try:\n C = i+1\n num += A[i]*A[C]\n C+=1\n count+=1\n except:\n pass\nprint(num)', 'mod=10**9 + 7\nn=int(input())\na=list(map(int,input().split()))\nans=0\ntotal=sum(a)\nfor i in a:\n total -= i\n ans += total*i\nprint(ans%mod)']
['Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Time Limit Exceeded', 'Accepted']
['s413160757', 's544168012', 's565703742', 's672543200', 's581557820']
[25096.0, 25096.0, 24848.0, 31748.0, 31604.0]
[118.0, 122.0, 44.0, 2206.0, 114.0]
[161, 156, 358, 224, 137]
p02572
u614381513
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['sus = 0\n\nfor i in a:\n su = su - i\n sus = sus + i * su\n\n\n\nprint(sus % (10**9 + 7))', 'n = int(input())\na = list(map(int, input().split()))\nb = []\nsu = 0\n\nla = len(a)\nele = a[la - 1]\n\nfor i in range(1, len(a) - 1):\n ele = ele + a[la - i - 1]\n b.append(ele)\n\nlb = len(b)\n\nfor j in range(len(a) - 2):\n su = su + a[j] * b[lb - j - 1]\n\nsu = su + a[len(a) - 1] * a[len(a) - 2]\n\nprint(su % (10**9 + 7))']
['Runtime Error', 'Accepted']
['s782349913', 's732380967']
[9084.0, 31496.0]
[23.0, 168.0]
[324, 318]
p02572
u616468898
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
["N = int(input())\nA = list(map(int, input().split(' ')))\n\nmodn = int(1e9 + 7)\n\nA = np.mod(A, modn)\n\nret = 0\nfor i in range(0, len(A)-1):\n for j in range(i+1, len(A)):\n ret += A[i]*A[j]\n\nprint(np.mod(ret, modn))\n", "import numpy as np\n\nN = int(input())\nA = list(map(int, input().split(' ')))\n\nmodn = int(1e9 + 7)\n\nruiseki = sum(A)\n\nret = 0\nfor i in range(0, len(A)-1):\n ruiseki -= A[i]\n ret += A[i] * ruiseki\n\nprint(np.mod(ret, modn))"]
['Runtime Error', 'Accepted']
['s656621325', 's540205846']
[31772.0, 50164.0]
[72.0, 209.0]
[214, 220]
p02572
u628633224
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['\nn = int(input())\nitem = [int(i) for i in input().split()]\nmod = 10**9+7\nt = (sum(item)**2 - sum([i**2 for i in item]))\n\nprint(int(t * pow(2, -1, mod)))\n', '\nn = int(input())\nitem = [int(i) for i in input().split()]\nmod = 10**9+7\nt = (sum(item)**2 - sum([i**2 for i in item]))\n\nprint(int(t * pow(2, -1, mod)) % mod)\n']
['Wrong Answer', 'Accepted']
['s977254374', 's234762014']
[31488.0, 31424.0]
[132.0, 137.0]
[153, 159]
p02572
u629246993
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['n = int(input())\na = list(map(int, input().split()))\nans = 0\ns = sum(a)-a[0]\nfor i in range(n-1):\n ans+=(a[i]*s)\n ans%=st\n s-=a[i+1]\nprint(ans)\n', 'n = int(input())\na = list(map(int, input().split()))\nst=10**9+7\nans = 0\ns = sum(a)-a[0]\nfor i in range(n-1):\n ans+=(a[i]*s)\n ans%=st\n s-=a[i+1]\nprint(ans)\n']
['Runtime Error', 'Accepted']
['s216711163', 's638788577']
[31616.0, 31440.0]
[73.0, 152.0]
[147, 158]
p02572
u630237503
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
["def calc(A, N, i):\n ans = 0\n for i in range(i, N - 1):\n ai = A[i]\n aj = A[i + 1]\n ans += ai * aj\n return (ans)\n\n\ndef main():\n N = int(input())\n A = list(map(int, input().split()))\n mod_v = 10**9 + 7\n ans = [0] * (N + 1)\n for i in range(0, N - 1):\n if A[i] != 0:\n ans[i] = calc(A, N, i)\n break\n for j in range(i + 1, N - 1):\n if A[j] != 0:\n ans[j] = (ans[j - 1] - A[j - 1] * A[j]) // A[j - 1] * A[j]\n else:\n ans[j] = 0\n ret = 0\n for k in range(0, N):\n ret += ans[k]\n ret = ret % mod_v\n print(ret)\n\n\nif __name__ == '__main__':\n main()", "def calc(A, N, i):\n ans = 0\n for i in range(i, N - 1):\n ai = A[i]\n aj = A[i + 1]\n ans += ai * aj\n return (ans)\n\n\ndef main():\n N = int(input())\n A = list(map(int, input().split()))\n mod_v = 10**9 + 7\n ans = [0] * (N + 1)\n for i in range(0, N - 1):\n if A[i] != 0:\n ans[i] = calc(A, N, i)\n break\n for j in range(i + 1, N - 1):\n if A[j - 1] != 0 and ans[j] == 0:\n ans[j] = (ans[j - 1] - A[j - 1] * A[j]) // A[j - 1] * A[j]\n else:\n ans[j] = 0\n ret = 0\n for k in range(0, N):\n ret += ans[k]\n ret = ret % mod_v\n print(ret)\n\n\nif __name__ == '__main__':\n main()", "def calc(A, N, i):\n ans = 0\n ai = A[i]\n for i in range(i, N - 1):\n aj = A[i + 1]\n ans += ai * aj\n return (ans)\n\n\ndef main():\n N = int(input())\n A = list(map(int, input().split()))\n mod_v = 10**9 + 7\n ans = [0] * (N + 1)\n for i in range(0, N - 1):\n if A[i] != 0:\n ans[i] = calc(A, N, i)\n break\n for j in range(i + 1, N - 1):\n if A[j] != 0:\n ans[j] = (ans[j - 1] - A[j - 1] * A[j]) // A[j - 1] * A[j]\n else:\n ans[j] = 0\n ret = 0\n for k in range(0, N):\n ret += ans[k]\n ret = ret % mod_v\n print(ret)\n\n\nif __name__ == '__main__':\n main()"]
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s693632854', 's831681857', 's545864475']
[30860.0, 30896.0, 30928.0]
[194.0, 190.0, 182.0]
[667, 687, 663]
p02572
u632395989
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['N = int(input())\nA = list(map(int, input().split())\nB = [] \nmod = 10**9 + 7\nans = 0\n\nfor i in range(N+1):\n B.append(sum(A[:i])) \n\nfor i in range(N):\n sum = (B[N] - B[i+1]) % mod\n ans += A[i] * sum\n ans %= mod\n\nprint(ans)', 'N = int(input())\nA = list(map(int, input().split()))\nB = [] \nmod = 10**9 + 7\nans = 0\n\nfor i in range(N):\n B[i+1] = B[i] + A[i] \n\nfor i in range(N):\n sum = (B[N] - B[i+1]) % mod\n ans += A[i] * sum\n ans %= mod\n\nprint(ans)\n', 'import numpy as np\nN = int(input())\nA = list(map(int, input().split()))\nB = [0] * (N+1) \nmod = 10**9 + 7\nans = 0\n\nfor i in range(N):\n B[i+1] = B[i] + A[i] \n\nfor i in range(N):\n sum = (B[N] - B[i+1]) % mod\n ans += A[i] * sum\n ans %= mod\n\nprint(int(ans))']
['Runtime Error', 'Runtime Error', 'Accepted']
['s889251581', 's967417387', 's785113742']
[8832.0, 31604.0, 49988.0]
[27.0, 74.0, 285.0]
[286, 286, 318]
p02572
u636582303
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['N = int(input())\narr = list(map(int, input().split(" ")))\n\nmod = 10 ** 9 + 7\n\ns = sum(arr) % mod\n\nresult = 0\nfor i in arr:\n s -= i\n s %= mod\n result += s\n result %= mod\nprint(result)\n', 'N = int(input())\narr = list(map(int, input().split(" ")))\n\nmod = 10 ** 9 + 7\n\nslist = sum(arr)\n\nresult = 0\nfor i in arr:\n result += i * (slist - i)\n result %= mod\nprint(result)\n', 'N = int(input())\narr = list(map(int, input().split(" ")))\n\nmod = 10 ** 9 + 7\n\ns = sum(arr) % mod\n\nresult = 0\nfor i in arr:\n s -= i\n s %= mod\n result += s * i\n result %= mod\nprint(result)\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s612055164', 's960782677', 's192124691']
[31380.0, 31716.0, 31544.0]
[124.0, 129.0, 140.0]
[187, 179, 191]
p02572
u637387397
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['n = int(input())\n\ns = input().split(" ")\n\nans = 0\nfor i in range(n):\n for j in range(int(i)+1,n-1):\n \n ans += int(s[i])*int(s[j])\nprint(ans%(10**9+7))', 'n = int(input())\n\ns = input().split(" ")\n\nsumup = 0\nfor i in s:\n sumup += int(i) \n\nans = 0\nfor i in s:\n r = int(i)\n \n sumup -= r\n \n ans += r*sumup\n \nprint(ans%(10**9+7))']
['Wrong Answer', 'Accepted']
['s665489751', 's136390594']
[25060.0, 25176.0]
[2206.0, 161.0]
[157, 178]
p02572
u643426419
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
["# -*- coding: utf-8 -*-\nN= int(input())\nA= list(map(int,input().split(' ')))\n\nans = 0\nfor i in range(len(A)-1):\n for j in range(i+1, len(A)):\n print(A[i],A[j])\n ans += A[i]*A[j]\n\nprint(ans)\n", "N=int(input())\nA=list(map(int,input().split(' ')))\n\nmod = 10**9+7\nans = 0\ncs = 0\nfor i in range(N-1, -1, -1):\n ans = (ans+A[i]*cs) % mod\n cs = (cs+A[i]) % mod\n\nprint(ans)\n"]
['Wrong Answer', 'Accepted']
['s721858652', 's939270542']
[72752.0, 31408.0]
[3114.0, 145.0]
[197, 173]
p02572
u645937929
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['N = int(input())\nA = list(map(int, input().split()))\n\nsum_of_product = (sum(A) ** 2) % (10 ** 9 + 7)\n\nfor i in A:\n sum_of_product -= i ** 2\n if sum_of_product < 0:\n sum_of_product += 10 ** 9 + 7\n\nprint(sum_of_product)', 'N = int(input())\nA = list(map(int, input().split()))\n\nsum_of_product = (sum(A) ** 2)\n\nfor i in A:\n sum_of_product -= i ** 2\n\nsum_of_product = (sum_of_product / 2) % 10 ** 9 + 7\n\nprint(sum_of_product)', 'N = int(input())\nA = list(map(int, input().split()))\n\nsum_of_product = sum(A) ** 2\n\nfor i in A:\n sum_of_product -= i ** 2\n\nsum_of_product = (sum_of_product / 2) % (10 ** 9 + 7)\n\nprint(sum_of_product)', 'N = int(input())\nA = list(map(int, input().split()))\n\nsum_of_product = (sum(A) ** 2)\n\nfor i in A:\n sum_of_product -= i ** 2\n\nsum_of_product %= 10 ** 9 + 7\n\nprint(sum_of_product)', 'input()\nA = list(map(int, input().split()))\n\nsum_list = sum(A)\nsum_of_product = 0\n\nfor i in A:\n sum_list -= i\n sum_of_product = ((sum_list * i) % (10 ** 9 + 7) + sum_of_product) % (10 ** 9 + 7)\n\nprint(sum_of_product)']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s013413608', 's431994492', 's441437462', 's501945954', 's120126440']
[31652.0, 31336.0, 31228.0, 31420.0, 31348.0]
[142.0, 126.0, 126.0, 132.0, 133.0]
[230, 202, 202, 180, 222]
p02572
u649769812
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['n = int(input())\nA = list(map(int, input().split()))\n\nS = sum(A)\nS2 = sum(map(lambda x: x * x, A))\n\nprint((S * S - S2 // 2) % (10 ** 9 + 7))\n', 'n = int(input())\nA = map(int, input().split())\n\nS = sum(A)\nS2 = sum(map(lambda x:x*x, A))\n\nprint(S*S - S2 / 2 % (10**9+7))', 'n = int(input())\nA = list(map(int, input().split()))\n\nS = sum(A)\nS2 = sum(map(lambda x:x*x, A))\n\nprint(S*S - S2 // 2 % (10**9+7))', 'n = int(input())\nA = list(map(int, input().split()))\n\nS = sum(A)\nS2 = sum(map(lambda x: x * x, A))\n\nprint((S * S - S2) // 2 % (10 ** 9 + 7))\n']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s029650524', 's325886728', 's575694534', 's786173006']
[31528.0, 24952.0, 31336.0, 31600.0]
[101.0, 68.0, 99.0, 97.0]
[141, 122, 129, 141]
p02572
u651913160
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['n = input()\na = list(map(int, input().split()))\nb = sum(a)\nsum = 0\n\nfor i in range(n):\n b -= a[i]\n sum += a[i]*b \n\nprint(sum%(10**9+7))', 'n = input()\na = list(map(int, input().split()))\nb= []\nfor i in range(len(a)):\n b.append(a[i]%(10**9+7))\nsum = 0\n\nfor i in range(len(b)):\n for j in range(i,len(b)):\n if i<j:\n sum += (b[i]) * (b[j])\n print(sum)\n \nprint(sum % (10**9+7))\n', 'n = input()\na = list(map((int%10**9+7), input().split()))\nsum = 0\n\nfor i in range(len(a)):\n for j in range(len(a)):\n if i<j:\n sum += (a[i]) * (a[j])\n \nprint(sum % 10**9+7)', 'n = input()\na = list(map(int, input().split()))\nb = sum(a)\nsum = 0\n\nfor i in range(len(a)):\n b -= a[i]\n sum += a[i]*b \n\nprint(sum%(10**9+7))']
['Runtime Error', 'Wrong Answer', 'Runtime Error', 'Accepted']
['s169626613', 's559589853', 's931060096', 's434667257']
[31744.0, 123296.0, 9120.0, 31480.0]
[73.0, 2354.0, 23.0, 127.0]
[143, 268, 195, 148]
p02572
u655048024
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['n = int(input())\na = list(map(int,input().split()))\nh = sum(a)\nans = 0\nfor i in range(n):\n h -= a[i]\n ans = (ans + (a[i]*(h))%(10**9+7)\nprint(ans)\n \n\n', 'n = int(input())\na = list(map(int,input().split()))\nh = sum(a)\nans = 0\nfor i in range(n):\n h -= a[i]\n ans = (ans+a[i]*(h))%(10**9+7)\nprint(ans)\n \n\n']
['Runtime Error', 'Accepted']
['s291450164', 's619398398']
[9044.0, 31608.0]
[24.0, 141.0]
[152, 149]
p02572
u667119433
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['import copy\nmod=10**9+7\ndef calc(nums,n):\n if n==2:\n return ((nums[0]%mod)*(nums[1]%mod))%mod\n cpy=copy.deepcopy(nums) \n save=nums[n-2]\n nums[n-2]=nums[n-1]\n for i in range(n-3,-1,-1):\n s=nums[i]%mod\n nums[i]=(save%mod+nums[i+1]%mod)%mod\n save=s%mod\n print(nums) \n ans=0 \n \n for i in range(n-1):\n ans=((ans%mod) + ((cpy[i]%mod)*(nums[i]%mod))%mod)%mod\n return ans \n \n\n\n\n\n\nn=int(input())\nnums=list(map(int,input().split()))\nprint(calc(nums,n))\n', 'import copy\nmod=(10**9)+7\ndef calc(nums,n):\n if n==1:\n return 0\n if n==2:\n return nums[0]*nums[1]\n cpy=copy.deepcopy(nums) \n save=nums[n-2]\n nums[n-2]=nums[n-1]\n for i in range(n-3,-1,-1):\n s=nums[i]\n nums[i]=save+nums[i+1]\n save=s\n ans=0 \n print(nums)\n for i in range(n-1):\n ans=((ans%mod) + ((cpy[i]%mod)*(nums[i]%mod))%mod)%mod\n return ans \n \n\n\n\n\n\nn=int(input())\nnums=list(map(int,input().split()))\nprint(calc(nums,n))\n', 'import copy\nmod=(10**9)+7\ndef calc(nums,n):\n if n==1:\n return 0\n if n==2:\n return nums[0]*nums[1]\n cpy=copy.deepcopy(nums) \n save=nums[n-2]\n nums[n-2]=nums[n-1]\n for i in range(n-3,-1,-1):\n s=nums[i]%mod\n nums[i]=(save+nums[i+1])%mod\n save=s\n ans=0 \n print(nums)\n for i in range(n-1):\n ans=((ans%mod) + ((cpy[i]%mod)*(nums[i]%mod))%mod)%mod\n return ans \n \n\n\n\n\n\nn=int(input())\nnums=list(map(int,input().split()))\nprint(calc(nums,n))\n', 'import copy\nmod=10**9+7\ndef calc(nums,n):\n if n==1:\n return 0\n if n==2:\n return nums[0]*nums[1]\n cpy=copy.deepcopy(nums) \n save=nums[n-2]\n nums[n-2]=nums[n-1]\n for i in range(n-3,-1,-1):\n s=nums[i]%mod\n nums[i]=(save+nums[i+1])%mod\n save=s\n ans=0 \n print(nums)\n for i in range(n-1):\n ans=((ans%mod) + ((cpy[i]%mod)*(nums[i]%mod))%mod)%mod\n return ans \n \n\n\n\n\n\nn=int(input())\nnums=list(map(int,input().split()))\nprint(calc(nums,n))\n', 'import copy\nmod=10**9+7\ndef calc(nums,n):\n if n==2:\n return ((nums[0]%mod)*(nums[1]%mod))%mod\n cpy=copy.deepcopy(nums) \n save=nums[n-2]\n nums[n-2]=nums[n-1]\n for i in range(n-3,-1,-1):\n s=nums[i]%mod\n nums[i]=(save%mod+nums[i+1]%mod)%mod\n save=s%mod\n \n ans=0 \n \n for i in range(n-1):\n ans=((ans%mod) + ((cpy[i]%mod)*(nums[i]%mod))%mod)%mod\n return ans \n \n\n\n\n\n\nn=int(input())\nnums=list(map(int,input().split()))\nprint(calc(nums,n))\n']
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s532750634', 's540041580', 's625295557', 's758998874', 's936025314']
[31860.0, 35796.0, 31660.0, 31564.0, 31836.0]
[281.0, 262.0, 269.0, 272.0, 276.0]
[526, 512, 522, 520, 514]
p02572
u671889550
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['n = int(input())\na = list(map(int, input().split()))\n\nsum_sq_a = 0\nfor i in range(n):\n sum_sq_a += a[i]**2\n\nans = ((sum(a)) - sum_sq_a) // 2\n\nprint(ans % (10**9 + 7))', "import numpy as np\n\nn = int(input())\na = np.array(list(map(int, input().split())), dtype = 'object')\nmod = 10**9 + 7\n\nsq_sum_a = sum(a)**2\nsum_sq_a = sum(a**2)\n\nsum_cross = (sq_sum_a - sum_sq_a) // 2\nans = sum_cross % mod\n# xy = ((x + y)**2 - (x**2 + y**2)) // 2\n\nprint(ans)"]
['Wrong Answer', 'Accepted']
['s559894227', 's133930038']
[31524.0, 49684.0]
[139.0, 232.0]
[169, 274]
p02572
u674588203
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['\n# C - Sum of product of pairs\n\nfrom itertools import combinations\n\nN= int(input())\nls= list(map(int,input().split()))\n\nmod=10**9+7\n\nans=0\n\nfor v in combinations(ls,2):\n print(v[0],v[1],v[0]*v[1],(v[0]*v[1]%mod))\n ans+= (v[0]*v[1])%mod\n ans%=mod\n\nprint(ans)\n', '\n# C - Sum of product of pairs\n\nN= int(input())\nls= list(map(int,input().split()))\n\nmod=10**9+7\n\nans=0\naccumls=[0]\n\nfor i in range (N):\n accumls.append(accumls[-1]+ls[i])\n\nfor i in range (N-1):\n ans+= ls[i]*(accumls[-1]-accumls[i+1])\n ans%=mod\n\nprint(ans)\n']
['Wrong Answer', 'Accepted']
['s523421722', 's000688670']
[78352.0, 31560.0]
[3213.0, 186.0]
[297, 295]
p02572
u684814987
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['import numpy as np\nfrom numba import jit\n@jit\n\n\ndef main():\n n = int(input().strip())\n l = list(map(int, input().split()))\n l = np.array(l)\n\n tot = 0\n for i in range(n):\n tot += (l[i] * (np.sum(l[i + 1:n], dtype=\'int64\') % (10 ** 9 + 7))) % (10 ** 9 + 7)\n\n print(tot % (10 ** 9 + 7))\n\n\nif __name__ == "__main__":\n main()', '\n\ndef main():\n n = int(input().strip())\n l = list(map(int, input().split()))\n stack = [0]*n\n\n totstack = 0\n for i in range(n-1):\n totstack += l[n-i-1]\n stack[n-i-2] = totstack\n\n tot = 0\n for i in range(n):\n tot += (l[i] * (stack[i] % (10 ** 9 + 7))) % (10 ** 9 + 7)\n\n print(tot % (10 ** 9 + 7))\n\n\nif __name__ == "__main__":\n main()\n\n']
['Time Limit Exceeded', 'Accepted']
['s692165951', 's239181150']
[134332.0, 31908.0]
[2210.0, 156.0]
[348, 381]
p02572
u686230543
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['mod = 10 ** 9 + 7\nn = int(input())\n\na_sum = 0\nsq_sum = 0\nfor a in map(int, input().split()):\n a_sum = (a_sum + a) % mod\n sq_sum = (sq_sum + a * a) % mod\nres = (a_sum * a_sum - sq_sum) % mod\nprint(-(p // 2) % mod * res % mod)', 'mod = 10 ** 9 + 7\nn = int(input())\n\na_sum = 0\nsq_sum = 0\nfor a in map(int, input().split()):\n a_sum = (a_sum + a) % mod\n sq_sum = (sq_sum + a * a) % mod\nres = (a_sum * a_sum - sq_sum) % mod\nprint(-(mod // 2) % mod * res % mod)']
['Runtime Error', 'Accepted']
['s533400080', 's518422255']
[25000.0, 25144.0]
[126.0, 129.0]
[226, 228]
p02572
u695197008
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['N = int(input())\nA = map(int, input().split())\n\nMOD = 10**9 + 7\n\ntotal = 0\nfor i in range(N):\n for j in range(i+1, N):\n total += A[i] * A[j]\n\nprint(total % MOD)', 'N = int(input())\nA = list(map(int, input().split()))\n\nMOD = 10**9 + 7\n\nsum_a = sum(A)\nsum_squares = sum([a*a for a in A])\n\nans = (sum_a**2 - sum_squares)//2\nans %= MOD\n\nprint(ans)']
['Runtime Error', 'Accepted']
['s408213702', 's431310108']
[25244.0, 31556.0]
[46.0, 89.0]
[164, 179]
p02572
u696886537
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
["f=open('in','r')\ninput=lambda:f.readline().strip()\n\nn=int(input())\nr=list(map(int,input().split()))\nmod=1000000007\ns=sum(r)%mod\nx=0\nfor u in r:\n x+=u**2\nx%=mod\nt=500000004\nprint((s**2-x)*t%mod)", "# f=open('in','r')\n# input=lambda:f.readline().strip()\n\nn=int(input())\nr=list(map(int,input().split()))\nmod=1000000007\ns=sum(r)%mod\nx=0\nfor u in r:\n x+=u**2\nx%=mod\nt=500000004\nprint((s**2-x)*t%mod)"]
['Runtime Error', 'Accepted']
['s867048452', 's077209879']
[9072.0, 31388.0]
[25.0, 129.0]
[194, 198]
p02572
u699636103
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['n = int(input())\na = [int(i) for i in input().split()]\n\nres = sum(i for i in a)\nans = 0\nbase = 1e9 + 7\nfor i in a:\n res -= i\n ans += (i * res)\n \nprint(ans % base)', 'n = int(input())\na = [int(i) for i in input().split()]\n\nres = sum(i for i in a)\n\nans = 0\nfor i in a:\n res -= i\n ans += i * res\n\nprint(ans % 1000000007)']
['Wrong Answer', 'Accepted']
['s846414190', 's594868905']
[31544.0, 31316.0]
[127.0, 123.0]
[165, 157]
p02572
u713767919
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
["def main():\n input()\n mod = 10**9 + 7\n arr = sorted(map(int, input().split()))\n arr.reverse()\n\txxx=False\n sm = arr[0] + arr[1]\n ans = arr[0] * arr[1] % mod\n\n for x in range(2, len(arr)):\n ans += sm * arr[x]\n sm += arr[x]\n\n print(ans % mod)\n\n\nif __name__ == '__main__':\n main()", "def main():\n n=int(input())\n mod = 10**9 + 7\n arr = sorted(map(int, input().split()))\n arr.reverse()\n\n sm = arr[0] + arr[1]\n ans = arr[0] * arr[1] % mod\n\n for x in range(2, len(arr)):\n ans += sm * arr[x]\n sm += arr[x]\n\n print(ans % mod)\n\n\nif __name__ == '__main__':\n main()"]
['Runtime Error', 'Accepted']
['s272216871', 's807751525']
[8976.0, 31620.0]
[28.0, 163.0]
[317, 314]
p02572
u714732628
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['n = int(input())\na = list(map(int, input().split()))\ns = 0\nans = 0\nfor i in range(len(a)):\n s += a[i]\nfor i in range(len(a)-1):\n s -= a[i]\n if s<0:\n\ts += 1e9+7\n ans += s*a[i]\n ans %= 1e9+7\nprint(int(ans))\n', 'n = int(input())\na = list(map(int, input().split()))\ns = 0\nans = 0\nfor i in range(len(a)):\n s += a[i]\nfor i in range(len(a)-1):\n s -= a[i]\n if s<0:\n s += 1e9+7\n ans += s*a[i]\n ans %= 1e9+7\nprint(ans)', 'n = int(input())\na = list(map(int, input().split()))\ns = 0\nans = 0\nfor i in range(len(a)):\n s += a[i]\nfor i in range(len(a)-1):\n s -= a[i]\n ans += s*a[i]\nprint(int(ans%1e9+7))', 'n = int(input())\na = list(map(int, input().split()))\ns = 0\nans = 0\nfor i in range(len(a)):\n s += a[i]\nfor i in range(len(a)-1):\n s -= a[i]\n if s<0:\n s += 1000000007\n ans += s*a[i]\n ans %= 1000000007\nprint(int(ans))']
['Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Accepted']
['s099007790', 's483854017', 's881150981', 's758677204']
[8880.0, 31612.0, 31564.0, 31468.0]
[22.0, 214.0, 163.0, 184.0]
[210, 207, 178, 222]
p02572
u714852797
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['N = int(input())\nA = list(map(int, input().split()))\n\nx = sum(A)\ny = sum([A[i] ** 2 for i in range(n)])\n\nprint(((x ** 2 - y) / 2) % (10 ** 9 + 7))', 'N = int(input())\nA = list(map(int, input().split()))\n\nA_sum = sum(A)\nA_squaresum = sum([a ** 2 for a in A])\nanswer = ((A_sum ** 2 - A_squaresum) // 2) % (10 ** 9 + 7)\n\nprint(answer)']
['Runtime Error', 'Accepted']
['s830127638', 's483483599']
[31504.0, 31640.0]
[70.0, 121.0]
[146, 181]
p02572
u718426899
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['a=int(input())\nb = list(map(int, input().split()))\nb.sort()\nS=0\nc=sum(b)\nfor i in range(0,a):\n S=S+b[i]*(c-b[i])\nprint(S % (10**9+7))\n', 'a=int(input())\nb = list(map(int, input().split()))\nb.sort()\nS=0\nc=sum(b)\nfor i in range(0,a):\n c=c-b[i]\n S=S+b[i]*c\nprint(S % (10**9+7))']
['Wrong Answer', 'Accepted']
['s272192472', 's227719048']
[31584.0, 31556.0]
[158.0, 178.0]
[137, 142]
p02572
u718536599
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['import itertools\n\ndef mod(x):\n return x%((10**9)+7)\nn=int(input())\na_list=list(map(int,input().split()))\nsum_list=[]\nfor i in itertools.combinations(a_list,2):\n sum_list.append((i[0]*i[1]))\n \n \nprint(sum_list)\ns=sum(sum_list)\ns=mod(s)\nprint(s)', 'import itertools\n\nn=int(input())\na_list=list(map(int,input().split()))\nsum=0\nps = list(itertools.accumulate(a_list))\nfor i in range(n-1):\n sum+=a_list[i]*(ps[n-1]-ps[i])\n\ns=sum%(10**9+7)\nprint(s)\n']
['Wrong Answer', 'Accepted']
['s873635150', 's311200198']
[537532.0, 31528.0]
[2227.0, 141.0]
[247, 197]
p02572
u726927868
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['num = int(input())\nar = list(map(int,input().split()))\nmod = 10**9 + 7\nsomee = sum(arr)\nans = 0\nfor i in range(num):\n ans+=(somee-ar[i])*ar[i]\nprint((ans//2)%mod)', 'num = int(input())\nar = list(map(int,input().split()))\nmod = 10**9 + 7\nsomee = sum(ar)\nans = 0\nfor i in range(num):\n ans+=(somee-ar[i])*ar[i]\nprint((ans//2)%mod)']
['Runtime Error', 'Accepted']
['s666212546', 's363807701']
[31428.0, 31568.0]
[69.0, 117.0]
[165, 164]
p02572
u727051308
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['N = int(input())\nA = input().split()\nS = 0\nB = 0\n\nfor i in range(N):\n A[i] = int(A[i])\n S += A[i] % (10**9+7)\n B += (A[i]**2) % (10**9+7)\n print(S,B)\n\nprint(((S**2) % (10**9+7) - B) / 2)', 'N = int(input())\nA = input().split()\nB = [0]*N\n\nfor i in range(N):\n A[i] = int(A[i])\n B[i] = A[i]*A[i]\n\nprint( ( ( (sum(A)*sum(A)) - sum(B) ) // 2 ) % ( 10**9 + 7 ) // 2 )\n', 'N = int(input())\nA = input().split()\nB = [0]*N\n\nfor i in range(N):\n A[i] = int(A[i])\n B[i] = A[i]*A[i]\n\nprint( ( ( (sum(A)*sum(A)) - sum(B) ) // 2 ) % ( 10**9 + 7 ) )\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s438248280', 's673617579', 's905933854']
[25212.0, 25020.0, 25140.0]
[322.0, 138.0, 147.0]
[190, 174, 169]
p02572
u729133443
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['a=s=0\nfor x in[*open(0)][1].split():x=int(x);a+=s*x;s+=x\nprint(a%(1e9+7))', 'c=s=0\nfor a in[*open(0)][1].split():a=int(a);c+=s*a;s+=a\nprint(c%(10**9+7))']
['Wrong Answer', 'Accepted']
['s010740364', 's550877353']
[25008.0, 25004.0]
[117.0, 123.0]
[73, 75]
p02572
u729790965
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['a=input().split()\nsum=0\nfor i in range(len(a)):\n a[i]=(int)(a[i])\nfor i in a:\n sum+=i\nans=0\nans+=(sum**2)\nfor i in a:\n ans-=i*i\nreturn (ans/2)%(10**9+7)', 'a=(int)(input().split())\nsum=0\nfor i in range(len(a)):\n a[i]=(int)(a[i])\nfor i in a:\n sum+=a\nans=0\nans+=(sum**2)\nfor i in a:\n ans-=i*i\nreturn ans%(10**9+7)', 'n=input()\na=input().split()\nsum=0\nfor i in range(len(a)):\n a[i]=(int)(a[i])\nfor i in a:\n sum+=i\nans=0\nans+=(sum**2)\nfor i in a:\n ans-=i*i\nprint((ans/2)%(10**9+7))', 'a=map(int,input().split())\nsum=0\nfor i in a:\n sum+=a\nans=0\nans+=(sum**2)\nfor i in a:\n ans-=i*i\nreturn ans%(10**9+7)', 'a=input().split()\nsum=0\nfor i in a:\n sum+=a\nans=0\nans+=(sum**2)\nfor i in a:\n ans-=i*i\nreturn ans%(10**9+7)', 'a=input().split()\nsum=0\nfor i in range(len(a)):\n a[i]=(int)(a[i])\nfor i in a:\n sum+=i\nans=0\nans+=(sum**2)\nfor i in a:\n ans-=i*i\nreturn ans%(10**9+7)', 'n=input()\na=input().split()\nsum=0\nfor i in range(len(a)):\n a[i]=(int)(a[i])\nfor i in a:\n sum+=i\nans=0\nans+=(sum**2)\nfor i in a:\n ans-=i*i\nreturn (ans/2)%(10**9+7)', 'n=input()\na=input().split()\nsum=0\nfor i in range(len(a)):\n a[i]=(int)(a[i])\nfor i in a:\n sum+=i\nans=0\nans+=(sum**2)\nfor i in a:\n ans-=i*i\nprint((ans//2)%(10**9+7))']
['Runtime Error', 'Runtime Error', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Runtime Error', 'Accepted']
['s014555566', 's293788055', 's767691641', 's890207358', 's930956105', 's941988478', 's951078738', 's270476326']
[9068.0, 8980.0, 25148.0, 8928.0, 9068.0, 8964.0, 8852.0, 24900.0]
[29.0, 25.0, 133.0, 23.0, 26.0, 26.0, 26.0, 135.0]
[155, 158, 165, 117, 108, 151, 165, 166]
p02572
u730807152
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['n = int(input())\na = list(map(int, input().split()))\n\nans = 0\ndouble = 0\n\nfor i in a:\n double += i*i\n\nans = (sum(a) * sum(a) - double) // 2\nprint((ans % (10**9 + 7))', 'n = int(input())\na = list(map(int, input().split()))\n\nans = 0\ndouble = 0\n\nfor i in a:\n double += i*i\n\nans = (sum(a) * sum(a) - double) // 2\nprint(ans % (10**9 + 7))']
['Runtime Error', 'Accepted']
['s412072211', 's544244932']
[9064.0, 31612.0]
[24.0, 102.0]
[168, 167]
p02572
u737670214
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['N = int(input())\n\nai_char = map(str, input().split(" "))\nAi = []\nfor i in ai_char:\n Ai.append(int(i))\n\nprint(Ai)\n\nsum = 0\nfor i in range(N-1):\n for j in range(i+1, N):\n sum += Ai[i]*Ai[j]\n #print("{} {}".format(i, j))\n\nprint(sum%1000000007)', 'N = int(input())\n\nai_char = map(str, input().split(" "))\nAi = []\nfor i in ai_char:\n Ai.append(int(i))\n\nmod_val = 1000000007\nN1 = N-1\nsum = 0\n\nsum_tmp = 0\nfor j in range(0, N):\n sum_tmp += Ai[j]\n\nfor i in range(N1):\n sum_tmp -= Ai[i]\n sum += Ai[i] * sum_tmp\n\n if sum > mod_val:\n sum = sum % mod_val\n\n\nprint(int(sum))']
['Wrong Answer', 'Accepted']
['s940454789', 's391269539']
[31420.0, 31564.0]
[2208.0, 210.0]
[260, 337]
p02572
u740157634
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['N = int(input())\nA = list(map(int, input().split()))\nmod = 10**9+7\nP = 0\nQ = 0\n\nfor i in range(N-1):\n for j in range(i+1, N):\n P += A[j] % mod\n Q += A[i] * P % mod\nprint(Q)\n', 'import numpy as np\n\nN = int(input())\nA = list(map(int, input().split()))\nmod = 10**9+7\n\narr = np.array(A)\nK = np.inner(arr, arr)\nP = pow(sum(A), 2)\nans = ((P-K)/2)%mod\n\nprint(ans)\n', 'N = int(input())\nA = list(map(int, input().split()))\nmod = 10**9+7\nk = int((10**9 + 8)/2)\nsum = 0\nsum_1 = 0\n\nfor i in range(N):\n sum += A[i]\nsum = (sum**2)%mod\n\nfor j in range(N):\n sum_1 += A[j]**2\nsum_1 = (sum_1)%mod\n\nans = sum - sum_1\nans = (ans*k)%mod\n\nprint(ans)\n']
['Wrong Answer', 'Wrong Answer', 'Accepted']
['s754094378', 's759944711', 's107709337']
[31416.0, 50244.0, 30996.0]
[2206.0, 168.0, 150.0]
[186, 180, 273]
p02572
u751717561
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['import decimal\nn = int(input())\na = list(map(int, input().split())) \n\nfirst = a[0]\n\nans = first*a[1]\n\nprint(ans)\nfor i in range(1, n-1):\n first += a[i]\n ans += first*a[i+1]\n\nprint(ans%(10**9+7))', '\nn = int(input())\na = list(map(int, input().split())) \n\nfirst = a[0]\n\nans = first*a[1]\n\nfor i in range(1, n-1):\n first += a[i]\n ans += first*a[i+1]\n\nprint(ans%(10**9+7))']
['Wrong Answer', 'Accepted']
['s670923262', 's215238108']
[32628.0, 31620.0]
[135.0, 128.0]
[200, 191]
p02572
u754869388
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
["def main():\n mod = 1000000007\n \n n = int(input())\n a = [int() for x in input().split()]\n ans = 0\n asum = sum(a) \n for i in range(n):\n asum = asum - a[i]\n ans = ( ans + ((a[i] * asum) % mod)) % mod\n \n print(ans)\n \nif __name__ == '__main__':\n main()", "import random\nimport numpy as np\ndef get_input():\n n = 200000\n a = []\n for i in range(n):\n a.append(random.randint(0,1000000000))\n aa = np.array(a,dtype='int64')\n return n,aa\n\ndef main():\n \n n = int(input())\n a = np.array([np.int64(x) for x in input().split()])\n p = (np.sum(a) ** 2) % 1000000007\n q = np.sum(a**2 % 1000000007) \n ans = (p-q)/2\n \n print(ans)\n \n \n\nif __name__ == '__main__':\n main()", "def main():\n mod = 1000000007\n \n n = int(input())\n a = [int() for x in input().split()]\n ans = 0\n asum = sum(a)\n for i in range(n):\n asum = asum - a[i]\n ans += (a[i] * asum) % mod\n \n print(ans)\n \nif __name__ == '__main__':\n main()", "def main():\n mod = 10**9+7\n \n n = int(input())\n a = [int(x) for x in input().split()]\n aa = [a**2 % mod for x in a]\n ans = 0\n asum = sum(a) \n p = asum ** 2 % mod\n q = sum(aa) % mod\n ans = (p - q) % mod\n if ans < 0:\n ans += mod\n if ans % 2 == 1:\n ans += mod\n ans = ans // 2\n print(ans)\n \nif __name__ == '__main__':\n main()", "def main():\n mod = 10**9+7\n \n n = int(input())\n a = [int() for x in input().split()]\n ans = 0\n asum = sum(a) \n for i in range(n):\n asum = asum - a[i]\n ans = ( ans + ((a[i] * asum) % mod)) % mod\n \n print(ans)\n \nif __name__ == '__main__':\n main()", "def main():\n mod = 10**9+7\n \n n = int(input())\n a = [int(x) for x in input().split()]\n aa = [x**2 % mod for x in a]\n ans = 0\n asum = sum(a) \n p = asum ** 2 % mod\n q = sum(aa) % mod\n ans = (p - q) % mod\n if ans < 0:\n ans += mod\n if ans % 2 == 1:\n ans += mod\n ans = ans // 2\n print(ans)\n \nif __name__ == '__main__':\n main()"]
['Wrong Answer', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Wrong Answer', 'Accepted']
['s071501066', 's598108598', 's660987453', 's685652931', 's963822687', 's490491874']
[25816.0, 59544.0, 26008.0, 31696.0, 25964.0, 31452.0]
[88.0, 284.0, 85.0, 81.0, 89.0, 134.0]
[312, 474, 295, 397, 309, 397]
p02572
u756195685
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['N = int(input())\nA = map(int,input().split())\nans = 0\nans2 = 0\nmod = 10 ** 9 + 7\nfor a in A:\n ans += a\n ans2 += a**2\n ans %= mod \n ans2 %= mod\nprint(((ans ** 2 + mod -ans2)//2)%mod) ', 'N = int(input())\nA = map(int,input().split())\nans = 0\nans2 = 0\nmod = 10 ** 9 + 7\nfor a in A:\n ans += a\n ans2 += a**2\n\nprint(((ans **2 - ans2)//2)%mod)']
['Wrong Answer', 'Accepted']
['s372351476', 's861505180']
[25236.0, 25272.0]
[182.0, 141.0]
[194, 156]
p02572
u766565683
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['n = int(input())\n\na = list(map(int, input().split()))\n\nsigma = 0\nafter = sum(a[0:])\nfor i in range(len(a)-1):\n start = a[i]\n after = after - [i]\n if after >= (10**9 + 7):\n after = after % (10**9+7)\n sigma = sigma + start * after\n if sigma >= (10**9 + 7):\n sigma = sigma % (10**9+7)\n\nprint(sigma)\n', 'n = int(input())\n\na = list(map(int, input().split()))\n\nsigma = sum(a)\ncount = 0\nfor i in range(len(a)-1):\n start = a[i]\n sigma = sigma-a[i]\n count = count + start * \n if count >= 10**9+7:\n count = count % (10**9+7)\n\nprint(count)', 'n = int(input())\n\na = list(map(int, input().split()))\n\nsigma = sum(a)\ncount = 0\nfor i in range(len(a)-1):\n start = a[i]\n sigma = sigma-a[i]\n count = count + start * sigma\n if count >= 10**9+7:\n count = count % (10**9+7)\n\nprint(count)']
['Runtime Error', 'Runtime Error', 'Accepted']
['s554069431', 's602805145', 's522393493']
[31440.0, 9028.0, 31396.0]
[79.0, 25.0, 152.0]
[307, 235, 240]
p02572
u773440446
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['n = int(input())\na = list(map(int,input().split()))\ns = sum(a)\nans = 0\n\nfor i in a:\n q = s-i\n ans += q\nprint(ans%(10**9+7))', 'n = int(input())\na = list(map(int,input().split()))\nmod = 10**9 + 7\n\ns = sum(a)\nans = 0\n\nfor i in a:\n s -= i\n s %= mod\n ans += s*i\n ans %= mod\n \nprint(ans)']
['Wrong Answer', 'Accepted']
['s937101553', 's019637669']
[31564.0, 31308.0]
[109.0, 141.0]
[125, 160]
p02572
u779293207
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['N = int(input())\nA = list(map(int, input().split()))\nc=0\nd=sum(A)\nfor i in range(0,N-1):\n c-=A[i]\n c+=A[i]*d\n if(c>10**9+7):\n c%=(10**9+7)\nprint(c)\n', 'N=int(input())\nA=list(map(int,input().split()))\nA2=0\nfor i in ragne(len(A)):\n A2+=A[i]**2\nc=(sum(A))**2-A2\nprint(c//2)', 'N=int(input())\nA=list(map(int,input().split()))\nA2=0\nfor i in range(len(A)):\n A2+=A[i]**2\nc=(sum(A))**2-A2\nprint(c//2%(10**9+7))\n\n']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s031645986', 's590425487', 's452686659']
[31380.0, 31564.0, 31644.0]
[158.0, 73.0, 139.0]
[164, 119, 131]
p02572
u784982404
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
["class UnionFind:\n def __init__(self, n):\n self.n = n\n self.parents = [-1] * n\n\n def find(self, x):\n if self.parents[x] < 0:\n return x\n else:\n self.parents[x] = self.find(self.parents[x])\n return self.parents[x]\n\n def union(self, x, y):\n x = self.find(x)\n y = self.find(y)\n\n if x == y:\n return\n\n if self.parents[x] > self.parents[y]:\n x, y = y, x\n\n self.parents[x] += self.parents[y]\n self.parents[y] = x\n\n def size(self, x):\n return -self.parents[self.find(x)]\n\n def same(self, x, y):\n return self.find(x) == self.find(y)\n\n def members(self, x):\n root = self.find(x)\n return [i for i in range(self.n) if self.find(i) == root]\n\n def roots(self):\n return [i for i, x in enumerate(self.parents) if x < 0]\n\n def group_count(self):\n return len(self.roots())\n\n def all_group_members(self):\n return {r: self.members(r) for r in self.roots()}\n\n def __str__(self):\n return '\\n'.join('{}: {}'.format(r, self.members(r)) for r in self.roots())\n\n\nN = int(input())\nA = input().split()\n\nSum = 0\n\nfor i in range(N):\n Sum += int(A[i])\n\nans = 0\nfor i in range(N):\n ans += (int(A[i])*(Sum-int(A[i]))%1000000007)%1000000007\n\nprint((ans/2)%1000000007)\n", 'N = int(input())\nA = input().split()\n\nSum = sum(A)\n\nans = 0\nfor i in range(N):\n ans += int(A[i])*(Sum-int(A[i]))\n\nans %= 1000000007\n\nprint(int(ans/2))\n', 'N = int(input())\nA = list(map(int,input().split()))\n\nSum = sum(A)\n\nans = 0\nfor i in range(N-1):\n Sum = Sum - A[i]\n ans += int(A[i])*Sum\n\nans %= 1000000007\n\nprint(int(ans))\n']
['Wrong Answer', 'Runtime Error', 'Accepted']
['s007750314', 's929068191', 's304793388']
[25280.0, 25056.0, 31584.0]
[231.0, 45.0, 142.0]
[1349, 154, 178]
p02572
u785618718
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['N = int(input())\n\nA = list(map(int, input().split()))\n\nans = sum(A)^2\n\nfor a in A:\n ans -= a^2\n\nans /= 2\n\nprint(int(ans%(10^9+7)))', 'N = int(input())\n \nA = list(map(int, input().split()))\n \nans = sum(A) ** 2\n\n \nfor a in A:\n ans = ans - a ** 2\n\n \nans = ans // 2\n \nprint(int(ans%(10**9+7)))']
['Wrong Answer', 'Accepted']
['s386130549', 's271025505']
[31512.0, 31500.0]
[105.0, 138.0]
[131, 156]
p02572
u788061153
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['n= int(input())\na= [int(i) for i in input().split()]\npref=[0]*n\npref[0] = a[0]%m\nfor i in range(1,n):\n pref[i] = (pref[i-1]+a[i])%m\nm = 10**9+7\nans = 0\n#print(pref)\nfor i in range(n-1):\n ans+= (a[i]%m *((pref[n-1]-pref[i])%m))%m\n ans = ans%m\nprint(ans)\n#437235829', 'n= int(input())\na= [int(i) for i in input().split()]\npref=[0]*n\nm = 10**9+7\npref[0] = a[0]%m\nfor i in range(1,n):\n pref[i] = (pref[i-1]+a[i])%m\nm = 10**9+7\nans = 0\n#print(pref)\nfor i in range(n-1):\n ans+= (a[i]%m *((pref[n-1]-pref[i])%m))%m\n ans = ans%m\nprint(ans)']
['Runtime Error', 'Accepted']
['s130288371', 's212305963']
[31828.0, 31560.0]
[79.0, 228.0]
[273, 274]
p02572
u805925900
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['\nusing namespace std;\n#define M 1000000007\nint main()\n{\n\tlong long a[200000], i,n, j, s=0, su=0;\n\tcin >> n;\n\tfor (i = 0; i < n; i++)\n\t{\n\t\tcin >> a[i];\n\t\ts=(s+a[i])%M;\n\t}\n\tfor (i = 0; i < n; i++)\n\t{\n\t\ts -= a[i];\n\t\ts+=M;\n\t\ts%=M;\n\t\tsu += (a[i] * s)%M;\n\t\tsu %= M;\n\t}\n\tcout << su;\n}', 'n=int(input())\nl=list(map(int,input().split()))\ns=sum(l)\nsu=0\nfor i in range(n):\n\ts=s-l[i]\n\ts=s%1000000007\n\tsu=su+(l[i]*s)\n\tsu=su%1000000007\nprint(su)']
['Runtime Error', 'Accepted']
['s730428138', 's924698658']
[9004.0, 31620.0]
[24.0, 155.0]
[296, 150]
p02572
u806988802
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['n = input()\n\nmax = 10**9 + 7\n\na_list = [int(a) % max for a in input().split(" ")]\n\nsum = 0\nfor i in range(0, len(a_list)-1):\n sum += a_list[i] * sum(a_list[i+1:])\nsum = sum % max\nprint(sum)\n', 'n = input()\na_list = input().split(" ")\n\nb = [int(a) for a in a_list]\nmax = 10**9 + 7\n\nsum = 0\nfor i in range(0, len(b)-2):\n for j in range(i+1, len(b)-1):\n sum += b[i] * b[j]\n while sum => max:\n sum -= max\nprint(sum)\n', 'n = input()\n \nmax = 10**9 + 7\n \na_list = [int(a) % max for a in input().split(" ")]\n\nprint(sum(a_list))\ntotal = 0\nfor i in range(0, len(a_list)-1):\n total += a_list[i] * sum(a_list[i+1:])\ntotal = total % max\nprint(total)\n', 'n = input()\n \nmax = 10**9 + 7\n \na_list = [int(a) % max for a in input().split(" ")]\na_sum = sum(a_list)\n\ntotal = 0\nfor i in range(0, len(a_list)-1):\n total += a_list[i] * (a_sum - a_list[i])\ntotal = total % max\nprint(total)\n', 'n = input()\n \nmax = 10**9 + 7\n \na_list = [int(a) % max for a in input().split(" ")]\n\nprint(sum(a_list))\ntotal = 0\nfor i in range(0, len(a_list)-1):\n print(a_list[i], a_list[i+1:])\n total += a_list[i] * sum(a_list[i+1:])\ntotal = total % max\nprint(total)\n', 'n = input()\n \nmax = 10**9 + 7\n \na_list = [int(a) % max for a in input().split(" ")]\n\ntotal = 0\nfor i in range(0, len(a_list)-1):\n print(a_list[i], a_list[i+1:])\n total += a_list[i] * sum(a_list[i+1:])\ntotal = total % max\nprint(total)\n', 'n = input()\n \nmax = 10**9 + 7\n \na_list = [int(a) % max for a in input().split(" ")]\na_sum = sum(a_list)\n\ntotal = 0\nfor i in range(0, len(a_list)-1):\n a_sum -= a_list[i]\n total += a_list[i] * a_sum\ntotal = total % max\nprint(total)\n']
['Runtime Error', 'Runtime Error', 'Wrong Answer', 'Wrong Answer', 'Runtime Error', 'Runtime Error', 'Accepted']
['s162517109', 's291375110', 's300414903', 's372790061', 's714997426', 's961096230', 's608815140']
[31332.0, 9056.0, 31600.0, 31620.0, 153012.0, 153112.0, 31404.0]
[88.0, 23.0, 2206.0, 138.0, 2469.0, 2460.0, 149.0]
[193, 230, 224, 227, 259, 240, 236]
p02572
u807028974
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
["# import sys\n# import math #sqrt,gcd,pi\n\nimport queue \n\n# import heapq # priolity-queue\n\n# from itertools import product,permutations,\\\n # combinations,combinations_with_replacement\n\n\n# from operator import itemgetter,mul\n# from fractions import Fraction\n# from functools import reduce\n\nmod = int(1e9+7)\n# mod = 998244353\nINF = 1<<50\n\ndef readInt():\n return list(map(int,input().split()))\n\ndef main():\n # n = int(input())\n # a = readInt()\n n = 200000\n a = [1000000000 for i in range(n)]\n ans = 0\n for i in range(n-1):\n for j in range(i+1,n):\n ans += a[i] * a[j]\n ans %= mod\n print(ans)\n return\n\nif __name__=='__main__':\n main()\n\n", "# import sys\n# import math #sqrt,gcd,pi\n\n\n\n# import heapq # priolity-queue\n\n# from itertools import product,permutations,\\\n # combinations,combinations_with_replacement\n\n\n# from operator import itemgetter,mul\n# from fractions import Fraction\n# from functools import reduce\n\nmod = int(1e9+7)\n# mod = 998244353\nINF = 1<<50\n\ndef readInt():\n return list(map(int,input().split()))\n\ndef main():\n n = int(input())\n a = readInt()\n c_sum = [0]\n for i in range(n):\n c_sum.append(c_sum[i]+a[i])\n ans = 0\n for i in range(n-1):\n ans += a[i] * (c_sum[-1] - c_sum[i+1])\n ans %= mod\n print(ans)\n return\n\nif __name__=='__main__':\n main()\n"]
['Time Limit Exceeded', 'Accepted']
['s129724844', 's472015159']
[11092.0, 31548.0]
[2206.0, 151.0]
[847, 846]
p02572
u813993459
2,000
1,048,576
Given are N integers A_1,\ldots,A_N. Find the sum of A_i \times A_j over all pairs (i,j) such that 1\leq i < j \leq N, modulo (10^9+7).
['a=input()\na = np.array(list(map(int, input().split())))\ncount=1\ntmp=0\nfor i in a[:-1]:\n tmp=(tmp+i*(a[count:]).sum())%(10**9+7)\n count+=1\nprint(tmp)', 'import numpy as np\nn = int(input())\na = np.array(list(map(int, input().split())))\ns=[0]*(n-1)\ntmp=0\nfor i in range(n-1):\n tmp=(tmp+a[(i+1)*-1])%(10**9+7)\n s[(i+1)*-1]=tmp\n \nprint(int((s*a[:-1]%(10**9+7)).sum()%(10**9+7)))']
['Runtime Error', 'Accepted']
['s281525967', 's002133532']
[9104.0, 49532.0]
[25.0, 331.0]
[154, 230]