File size: 3,409 Bytes
aef0d61
 
 
 
 
 
 
 
 
 
 
 
636738c
 
 
 
 
 
aef0d61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
636738c
aef0d61
 
 
636738c
aef0d61
 
636738c
aef0d61
 
 
636738c
aef0d61
 
 
636738c
aef0d61
 
 
636738c
aef0d61
 
 
636738c
aef0d61
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import datasets
import pandas as pd

_CITATION = """\
@InProceedings{huggingface:dataset,
title = {MacBook-Attacks-Dataset},
author = {TrainingDataPro},
year = {2023}
}
"""

_DESCRIPTION = """\
The dataset consists of videos of replay attacks played on different
models of MacBooks. The dataset solves tasks in the field of anti-spoofing and
it is useful for buisness and safety systems.

The dataset includes: **replay attacks** - videos of real people played on
a computer and filmed on the phone.
"""
_NAME = 'MacBook-Attacks-Dataset'

_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"

_LICENSE = "cc-by-nc-nd-4.0"

_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"


class MacBookAttacksDataset(datasets.GeneratorBasedBuilder):

    def _info(self):
        return datasets.DatasetInfo(description=_DESCRIPTION,
                                    features=datasets.Features({
                                        'file': datasets.Value('string'),
                                        'phone': datasets.Value('string'),
                                        'computer': datasets.Value('string'),
                                        'gender': datasets.Value('string'),
                                        'age': datasets.Value('int16'),
                                        'country': datasets.Value('string'),
                                    }),
                                    supervised_keys=None,
                                    homepage=_HOMEPAGE,
                                    citation=_CITATION,
                                    license=_LICENSE)

    def _split_generators(self, dl_manager):
        attacks = dl_manager.download(f"{_DATA}attacks.tar.gz")
        annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
        attacks = dl_manager.iter_archive(attacks)
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN,
                                    gen_kwargs={
                                        "attacks": attacks,
                                        'annotations': annotations
                                    }),
        ]

    def _generate_examples(self, attacks, annotations):
        annotations_df = pd.read_csv(annotations, sep=';')
        for idx, (video_path, video) in enumerate(attacks):
            # file_name = '/'.join(video_path.split('/')[-2:])

            yield idx, {
                'file':
                    video_path,
                'phone':
                    annotations_df.loc[
                        annotations_df['file'] == video_path.lower()]
                    ['phone'].values[0],
                'computer':
                    annotations_df.loc[
                        annotations_df['file'] == video_path.lower()]
                    ['computer'].values[0],
                'gender':
                    annotations_df.loc[
                        annotations_df['file'] == video_path.lower()]
                    ['gender'].values[0],
                'age':
                    annotations_df.loc[
                        annotations_df['file'] == video_path.lower()]
                    ['age'].values[0],
                'country':
                    annotations_df.loc[
                        annotations_df['file'] == video_path.lower()]
                    ['country'].values[0]
            }