File size: 3,409 Bytes
aef0d61 636738c aef0d61 636738c aef0d61 636738c aef0d61 636738c aef0d61 636738c aef0d61 636738c aef0d61 636738c aef0d61 636738c aef0d61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
import datasets
import pandas as pd
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {MacBook-Attacks-Dataset},
author = {TrainingDataPro},
year = {2023}
}
"""
_DESCRIPTION = """\
The dataset consists of videos of replay attacks played on different
models of MacBooks. The dataset solves tasks in the field of anti-spoofing and
it is useful for buisness and safety systems.
The dataset includes: **replay attacks** - videos of real people played on
a computer and filmed on the phone.
"""
_NAME = 'MacBook-Attacks-Dataset'
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
_LICENSE = "cc-by-nc-nd-4.0"
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/"
class MacBookAttacksDataset(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(description=_DESCRIPTION,
features=datasets.Features({
'file': datasets.Value('string'),
'phone': datasets.Value('string'),
'computer': datasets.Value('string'),
'gender': datasets.Value('string'),
'age': datasets.Value('int16'),
'country': datasets.Value('string'),
}),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE)
def _split_generators(self, dl_manager):
attacks = dl_manager.download(f"{_DATA}attacks.tar.gz")
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv")
attacks = dl_manager.iter_archive(attacks)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN,
gen_kwargs={
"attacks": attacks,
'annotations': annotations
}),
]
def _generate_examples(self, attacks, annotations):
annotations_df = pd.read_csv(annotations, sep=';')
for idx, (video_path, video) in enumerate(attacks):
# file_name = '/'.join(video_path.split('/')[-2:])
yield idx, {
'file':
video_path,
'phone':
annotations_df.loc[
annotations_df['file'] == video_path.lower()]
['phone'].values[0],
'computer':
annotations_df.loc[
annotations_df['file'] == video_path.lower()]
['computer'].values[0],
'gender':
annotations_df.loc[
annotations_df['file'] == video_path.lower()]
['gender'].values[0],
'age':
annotations_df.loc[
annotations_df['file'] == video_path.lower()]
['age'].values[0],
'country':
annotations_df.loc[
annotations_df['file'] == video_path.lower()]
['country'].values[0]
}
|