feat: upload script docs: readme
Browse files- README.md +18 -0
- face_segmentation.py → helmet_detection.py +7 -9
README.md
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
dataset_info:
|
3 |
+
features:
|
4 |
+
- name: id
|
5 |
+
dtype: string
|
6 |
+
- name: image
|
7 |
+
dtype: image
|
8 |
+
- name: mask
|
9 |
+
dtype: image
|
10 |
+
- name: bboxes
|
11 |
+
dtype: string
|
12 |
+
splits:
|
13 |
+
- name: train
|
14 |
+
num_bytes: 56575701
|
15 |
+
num_examples: 46
|
16 |
+
download_size: 56584366
|
17 |
+
dataset_size: 56575701
|
18 |
+
---
|
face_segmentation.py → helmet_detection.py
RENAMED
@@ -3,7 +3,7 @@ import pandas as pd
|
|
3 |
|
4 |
_CITATION = """\
|
5 |
@InProceedings{huggingface:dataset,
|
6 |
-
title = {
|
7 |
author = {TrainingDataPro},
|
8 |
year = {2023}
|
9 |
}
|
@@ -14,7 +14,7 @@ An example of a dataset that we've collected for a photo edit App.
|
|
14 |
The dataset includes 20 selfies of people (man and women)
|
15 |
in segmentation masks and their visualisations.
|
16 |
"""
|
17 |
-
_NAME = '
|
18 |
|
19 |
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
|
20 |
|
@@ -30,11 +30,10 @@ class FaceSegmentation(datasets.GeneratorBasedBuilder):
|
|
30 |
return datasets.DatasetInfo(
|
31 |
description=_DESCRIPTION,
|
32 |
features=datasets.Features({
|
|
|
33 |
'image': datasets.Image(),
|
34 |
'mask': datasets.Image(),
|
35 |
-
'
|
36 |
-
'gender': datasets.Value('string'),
|
37 |
-
'age': datasets.Value('int8')
|
38 |
}),
|
39 |
supervised_keys=None,
|
40 |
homepage=_HOMEPAGE,
|
@@ -57,11 +56,12 @@ class FaceSegmentation(datasets.GeneratorBasedBuilder):
|
|
57 |
]
|
58 |
|
59 |
def _generate_examples(self, images, masks, annotations):
|
60 |
-
annotations_df = pd.read_csv(annotations
|
61 |
|
62 |
for idx, ((image_path, image),
|
63 |
(mask_path, mask)) in enumerate(zip(images, masks)):
|
64 |
yield idx, {
|
|
|
65 |
"image": {
|
66 |
"path": image_path,
|
67 |
"bytes": image.read()
|
@@ -70,7 +70,5 @@ class FaceSegmentation(datasets.GeneratorBasedBuilder):
|
|
70 |
"path": mask_path,
|
71 |
"bytes": mask.read()
|
72 |
},
|
73 |
-
'
|
74 |
-
'gender': annotations_df['gender'].iloc[idx],
|
75 |
-
'age': annotations_df['age'].iloc[idx]
|
76 |
}
|
|
|
3 |
|
4 |
_CITATION = """\
|
5 |
@InProceedings{huggingface:dataset,
|
6 |
+
title = {helmet_detection},
|
7 |
author = {TrainingDataPro},
|
8 |
year = {2023}
|
9 |
}
|
|
|
14 |
The dataset includes 20 selfies of people (man and women)
|
15 |
in segmentation masks and their visualisations.
|
16 |
"""
|
17 |
+
_NAME = 'helmet_detection'
|
18 |
|
19 |
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}"
|
20 |
|
|
|
30 |
return datasets.DatasetInfo(
|
31 |
description=_DESCRIPTION,
|
32 |
features=datasets.Features({
|
33 |
+
'id': datasets.Value('string'),
|
34 |
'image': datasets.Image(),
|
35 |
'mask': datasets.Image(),
|
36 |
+
'bboxes': datasets.Value('string')
|
|
|
|
|
37 |
}),
|
38 |
supervised_keys=None,
|
39 |
homepage=_HOMEPAGE,
|
|
|
56 |
]
|
57 |
|
58 |
def _generate_examples(self, images, masks, annotations):
|
59 |
+
annotations_df = pd.read_csv(annotations)
|
60 |
|
61 |
for idx, ((image_path, image),
|
62 |
(mask_path, mask)) in enumerate(zip(images, masks)):
|
63 |
yield idx, {
|
64 |
+
'id': annotations_df['image_id'].iloc[idx],
|
65 |
"image": {
|
66 |
"path": image_path,
|
67 |
"bytes": image.read()
|
|
|
70 |
"path": mask_path,
|
71 |
"bytes": mask.read()
|
72 |
},
|
73 |
+
'bboxes': annotations_df['bboxes'].iloc[idx]
|
|
|
|
|
74 |
}
|